Nuprl Lemma : W_sel_wf
∀[Pos:Type]
  ∀[Mv:Pos ⟶ Type]. ∀[n:ℕ]. ∀[w:WfdSpread(Pos;a.Mv[a])]. ∀[s:ℕn ⟶ MoveChoice(Pos;a.Mv[a])].
    (W_sel(w;n;s) ∈ WfdSpread(Pos;a.Mv[a])?) 
  supposing ∀x,y:Pos.  Dec(x = y ∈ Pos)
Proof
Definitions occuring in Statement : 
W_sel: W_sel(w;n;s)
, 
WfdSpread: WfdSpread(Pos;a.Mv[a])
, 
MoveChoice: MoveChoice(Pos;a.Mv[a])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
W_sel: W_sel(w;n;s)
, 
subgame: subgame(g;p;n)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
mkW: mkW(a;f)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
shift-play: shift-play(p)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
MoveChoice_wf, 
WfdSpread_wf, 
unit_wf2, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
WfdSpread-ext, 
subtype_rel_weakening, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
mkW_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
shift-play_wf, 
le_wf, 
nat_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
inlEquality, 
because_Cache, 
unionElimination, 
productEquality, 
productElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
unionEquality, 
dependent_set_memberEquality, 
inrEquality, 
universeEquality
Latex:
\mforall{}[Pos:Type]
    \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:WfdSpread(Pos;a.Mv[a])].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  MoveChoice(Pos;a.Mv[a])].
        (W\_sel(w;n;s)  \mmember{}  WfdSpread(Pos;a.Mv[a])?) 
    supposing  \mforall{}x,y:Pos.    Dec(x  =  y)
Date html generated:
2017_04_17-AM-09_28_49
Last ObjectModification:
2017_02_27-PM-05_28_59
Theory : spread
Home
Index