Nuprl Lemma : WfdSpread-ext

[Pos:Type]
  ∀[Mv:Pos ⟶ Type]. WfdSpread(Pos;a.Mv[a]) ≡ a:Pos × (Mv[a] ⟶ WfdSpread(Pos;a.Mv[a])) 
  supposing ∀a,b:Pos.  Dec(a b ∈ Pos)


Proof




Definitions occuring in Statement :  WfdSpread: WfdSpread(Pos;a.Mv[a]) ext-eq: A ≡ B decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: WfdSpread: WfdSpread(Pos;a.Mv[a]) guard: {T} implies:  Q exists: x:A. B[x] squash: T nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) MoveChoice: MoveChoice(Pos;a.Mv[a]) eqof: eqof(d) bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subgame: subgame(g;p;n) eq_int: (i =z j) subtract: m resigned: resigned(x) isr: isr(x) deq: EqDecider(T) int_seg: {i..j-} lelt: i ≤ j < k true: True
Lemmas referenced :  spread-ext WfdSpread_wf decidable_wf equal_wf subtype_rel_weakening Spread_wf nat_wf MoveChoice_wf squash_wf exists_wf resigned_wf subgame_wf subtype_rel_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self deq-exists eq_int_wf eqtt_to_assert assert_of_eq_int safe-assert-deq subtype_rel-equal unit_wf2 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff bool_wf neg_assert_of_eq_int upper_subtype_nat nat_properties nequal-le-implies zero-add le_wf subtract_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf assert_wf bnot_wf not_wf equal-wf-T-base set_subtype_base int_subtype_base bool_cases iff_transitivity assert_of_bnot eqof_wf member_wf intformeq_wf int_formula_prop_eq_lemma true_wf decidable__equal_int int_seg_properties itermAdd_wf int_term_value_add_lemma add-subtract-cancel bfalse_wf btrue_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation Error :lambdaEquality_alt,  Error :universeIsType,  sqequalRule applyEquality hypothesis Error :productIsType,  Error :functionIsType,  because_Cache productElimination independent_pairEquality axiomEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry universeEquality setElimination rename cumulativity functionExtensionality productEquality functionEquality independent_isectElimination Error :lambdaFormation_alt,  Error :dependent_pairEquality_alt,  Error :equalityIsType1,  dependent_functionElimination independent_functionElimination Error :functionExtensionality_alt,  Error :dependent_set_memberEquality_alt,  imageElimination imageMemberEquality baseClosed natural_numberEquality unionElimination equalityElimination Error :inlEquality_alt,  Error :dependent_pairFormation_alt,  promote_hyp instantiate voidElimination Error :inrEquality_alt,  hypothesis_subsumption approximateComputation int_eqEquality intEquality Error :equalityIsType4,  hyp_replacement Error :unionIsType,  addEquality applyLambdaEquality

Latex:
\mforall{}[Pos:Type]
    \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  WfdSpread(Pos;a.Mv[a])  \mequiv{}  a:Pos  \mtimes{}  (Mv[a]  {}\mrightarrow{}  WfdSpread(Pos;a.Mv[a])) 
    supposing  \mforall{}a,b:Pos.    Dec(a  =  b)



Date html generated: 2019_06_20-PM-02_02_59
Last ObjectModification: 2018_09_30-PM-02_47_30

Theory : spread


Home Index