Nuprl Lemma : WfdSpread-ext
∀[Pos:Type]
  ∀[Mv:Pos ⟶ Type]. WfdSpread(Pos;a.Mv[a]) ≡ a:Pos × (Mv[a] ⟶ WfdSpread(Pos;a.Mv[a])) 
  supposing ∀a,b:Pos.  Dec(a = b ∈ Pos)
Proof
Definitions occuring in Statement : 
WfdSpread: WfdSpread(Pos;a.Mv[a])
, 
ext-eq: A ≡ B
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
WfdSpread: WfdSpread(Pos;a.Mv[a])
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
MoveChoice: MoveChoice(Pos;a.Mv[a])
, 
eqof: eqof(d)
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
subgame: subgame(g;p;n)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
resigned: resigned(x)
, 
isr: isr(x)
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
Lemmas referenced : 
spread-ext, 
WfdSpread_wf, 
decidable_wf, 
equal_wf, 
subtype_rel_weakening, 
Spread_wf, 
nat_wf, 
MoveChoice_wf, 
squash_wf, 
exists_wf, 
resigned_wf, 
subgame_wf, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
deq-exists, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
safe-assert-deq, 
subtype_rel-equal, 
unit_wf2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
bool_wf, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
zero-add, 
le_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
set_subtype_base, 
int_subtype_base, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
eqof_wf, 
member_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
true_wf, 
decidable__equal_int, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-subtract-cancel, 
bfalse_wf, 
btrue_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
sqequalRule, 
applyEquality, 
hypothesis, 
Error :productIsType, 
Error :functionIsType, 
because_Cache, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
cumulativity, 
functionExtensionality, 
productEquality, 
functionEquality, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
Error :dependent_pairEquality_alt, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
Error :functionExtensionality_alt, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
Error :inlEquality_alt, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
voidElimination, 
Error :inrEquality_alt, 
hypothesis_subsumption, 
approximateComputation, 
int_eqEquality, 
intEquality, 
Error :equalityIsType4, 
hyp_replacement, 
Error :unionIsType, 
addEquality, 
applyLambdaEquality
Latex:
\mforall{}[Pos:Type]
    \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  WfdSpread(Pos;a.Mv[a])  \mequiv{}  a:Pos  \mtimes{}  (Mv[a]  {}\mrightarrow{}  WfdSpread(Pos;a.Mv[a])) 
    supposing  \mforall{}a,b:Pos.    Dec(a  =  b)
Date html generated:
2019_06_20-PM-02_02_59
Last ObjectModification:
2018_09_30-PM-02_47_30
Theory : spread
Home
Index