Nuprl Lemma : mkW_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type]. ∀[a:Pos]. ∀[f:Mv[a] ⟶ WfdSpread(Pos;a.Mv[a])].  (mkW(a;f) ∈ WfdSpread(Pos;a.Mv[a]))


Proof




Definitions occuring in Statement :  mkW: mkW(a;f) WfdSpread: WfdSpread(Pos;a.Mv[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mkW: mkW(a;f) WfdSpread: WfdSpread(Pos;a.Mv[a]) all: x:A. B[x] squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: exists: x:A. B[x] ext-eq: A ≡ B subgame: subgame(g;p;n) resigned: resigned(x) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  isr: isr(x) assert: b bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb subtract: m nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k true: True int_upper: {i...} eq_int: (i =z j)
Lemmas referenced :  spread-ext nat_wf MoveChoice_wf all_wf squash_wf exists_wf resigned_wf subgame_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self WfdSpread_wf Spread_wf le_wf unit_wf2 equal_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-associates add-swap add-commutes zero-add true_wf add-subtract-cancel int_seg_properties and_wf isr_wf assert_elim int_upper_subtype_nat nequal-le-implies assert_wf subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_set_memberEquality lambdaFormation hypothesis imageElimination sqequalRule imageMemberEquality baseClosed functionEquality cumulativity lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality dependent_pairEquality productElimination unionEquality unionElimination dependent_functionElimination independent_functionElimination applyLambdaEquality addEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll equalityElimination promote_hyp instantiate hypothesis_subsumption

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[a:Pos].  \mforall{}[f:Mv[a]  {}\mrightarrow{}  WfdSpread(Pos;a.Mv[a])].
    (mkW(a;f)  \mmember{}  WfdSpread(Pos;a.Mv[a]))



Date html generated: 2017_04_17-AM-09_28_47
Last ObjectModification: 2017_02_27-PM-05_28_58

Theory : spread


Home Index