Nuprl Lemma : bag-maximal?-max
∀[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x,y:T].  (↑(R x y)) supposing ((↑bag-maximal?(b;x;R)) and y ↓∈ b)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-maximal?: bag-maximal?(bg;x;R)
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
empty-bag: {}
, 
uiff: uiff(P;Q)
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
cons-bag: x.b
, 
sq_or: a ↓∨ b
, 
sq_stable: SqStable(P)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
Lemmas referenced : 
assert_wf, 
bag-maximal?_wf, 
bag-member_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-subtype-bag, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_wf, 
list-cases, 
bag-member-empty-iff, 
nil_wf, 
product_subtype_list, 
spread_cons_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
bag-member-cons, 
cons_wf, 
list_induction, 
bag-maximal?-cons, 
sq_stable_from_decidable, 
decidable__assert, 
and_wf, 
assert_elim, 
bool_wf, 
bool_subtype_base, 
bag_wf, 
assert_witness, 
bag_to_squash_list
Rules used in proof : 
because_Cache, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
productElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
instantiate, 
imageElimination, 
functionEquality, 
imageMemberEquality, 
universeEquality, 
isect_memberFormation, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:T].
    (\muparrow{}(R  x  y))  supposing  ((\muparrow{}bag-maximal?(b;x;R))  and  y  \mdownarrow{}\mmember{}  b)
Date html generated:
2017_10_01-AM-08_58_52
Last ObjectModification:
2017_07_26-PM-04_40_43
Theory : bags
Home
Index