Nuprl Lemma : bag-to-list_wf
∀[T:Type]
  ∀[b:bag(T)]. ∀[cmp:comparison({x:T| x ↓∈ b} )].
    bag-to-list(cmp;b) ∈ T List supposing ∀x,y:{x:T| x ↓∈ b} .  (((cmp x y) = 0 ∈ ℤ) ⇒ (x = y ∈ T)) 
  supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-to-list: bag-to-list(cmp;b), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
comparison: comparison(T), 
list: T List, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
ext-eq: A ≡ B, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
squash: ↓T, 
prop: ℙ, 
linorder: Linorder(T;x,y.R[x; y]), 
order: Order(T;x,y.R[x; y]), 
cand: A c∧ B, 
comparison: comparison(T), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bag-to-list: bag-to-list(cmp;b), 
le: A ≤ B, 
sorted-by: sorted-by(R;L), 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
not: ¬A, 
false: False
Lemmas referenced : 
list_wf, 
member-permutation, 
bag-member-iff-sq-list-member, 
l_member_wf, 
bag-member_wf, 
list-subtype-bag, 
comparison-refl, 
comparison-trans, 
comparison-antisym, 
equal-wf-T-base, 
set_wf, 
comparison-connex, 
subtype_rel_comparison, 
ext-eq_inversion, 
subtype_rel_weakening, 
equal-wf-base, 
permutation_wf, 
all_wf, 
equal_wf, 
comparison_wf, 
bag_wf, 
valueall-type_wf, 
list-subtype, 
subtype_rel_list, 
permutation-sorted-by-unique, 
le_wf, 
comparison-sort_wf, 
set-valueall-type, 
sorted-by_wf, 
sq_stable__all, 
int_seg_wf, 
length_wf, 
sq_stable__le, 
less_than'_wf, 
squash_wf, 
comparison-sort-permutation, 
permutation_functionality_wrt_permutation, 
permutation-strong-subtype, 
strong-subtype-set2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
imageElimination, 
dependent_set_memberEquality, 
setEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
intEquality, 
promote_hyp, 
productEquality, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality, 
natural_numberEquality, 
independent_pairEquality, 
voidElimination
Latex:
\mforall{}[T:Type]
    \mforall{}[b:bag(T)].  \mforall{}[cmp:comparison(\{x:T|  x  \mdownarrow{}\mmember{}  b\}  )].
        bag-to-list(cmp;b)  \mmember{}  T  List  supposing  \mforall{}x,y:\{x:T|  x  \mdownarrow{}\mmember{}  b\}  .    (((cmp  x  y)  =  0)  {}\mRightarrow{}  (x  =  y)) 
    supposing  valueall-type(T)
Date html generated:
2017_10_01-AM-08_56_53
Last ObjectModification:
2017_07_26-PM-04_39_08
Theory : bags
Home
Index