Nuprl Lemma : bag-to-list_wf

[T:Type]
  ∀[b:bag(T)]. ∀[cmp:comparison({x:T| x ↓∈ b} )].
    bag-to-list(cmp;b) ∈ List supposing ∀x,y:{x:T| x ↓∈ b} .  (((cmp y) 0 ∈ ℤ (x y ∈ T)) 
  supposing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-to-list: bag-to-list(cmp;b) bag-member: x ↓∈ bs bag: bag(T) comparison: comparison(T) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q guard: {T} ext-eq: A ≡ B subtype_rel: A ⊆B uiff: uiff(P;Q) squash: T prop: linorder: Linorder(T;x,y.R[x; y]) order: Order(T;x,y.R[x; y]) cand: c∧ B comparison: comparison(T) so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q bag-to-list: bag-to-list(cmp;b) le: A ≤ B sorted-by: sorted-by(R;L) int_seg: {i..j-} sq_stable: SqStable(P) not: ¬A false: False
Lemmas referenced :  list_wf member-permutation bag-member-iff-sq-list-member l_member_wf bag-member_wf list-subtype-bag comparison-refl comparison-trans comparison-antisym equal-wf-T-base set_wf comparison-connex subtype_rel_comparison ext-eq_inversion subtype_rel_weakening equal-wf-base permutation_wf all_wf equal_wf comparison_wf bag_wf valueall-type_wf list-subtype subtype_rel_list permutation-sorted-by-unique le_wf comparison-sort_wf set-valueall-type sorted-by_wf sq_stable__all int_seg_wf length_wf sq_stable__le less_than'_wf squash_wf comparison-sort-permutation permutation_functionality_wrt_permutation permutation-strong-subtype strong-subtype-set2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination because_Cache independent_pairFormation lambdaEquality setElimination rename independent_isectElimination imageElimination dependent_set_memberEquality setEquality applyEquality imageMemberEquality baseClosed lambdaFormation intEquality promote_hyp productEquality axiomEquality functionEquality isect_memberEquality universeEquality natural_numberEquality independent_pairEquality voidElimination

Latex:
\mforall{}[T:Type]
    \mforall{}[b:bag(T)].  \mforall{}[cmp:comparison(\{x:T|  x  \mdownarrow{}\mmember{}  b\}  )].
        bag-to-list(cmp;b)  \mmember{}  T  List  supposing  \mforall{}x,y:\{x:T|  x  \mdownarrow{}\mmember{}  b\}  .    (((cmp  x  y)  =  0)  {}\mRightarrow{}  (x  =  y)) 
    supposing  valueall-type(T)



Date html generated: 2017_10_01-AM-08_56_53
Last ObjectModification: 2017_07_26-PM-04_39_08

Theory : bags


Home Index