Nuprl Lemma : combination-decomp

[A:Type]. ∀[n:ℕ+]. ∀[L:Combination(n;A)].  {(hd(L) ∈ A) ∧ (tl(L) ∈ Combination(n 1;{a:A| ¬(a hd(L) ∈ A)} ))}


Proof




Definitions occuring in Statement :  combination: Combination(n;T) hd: hd(l) tl: tl(l) nat_plus: + uall: [x:A]. B[x] guard: {T} not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T combination: Combination(n;T) all: x:A. B[x] or: P ∨ Q guard: {T} and: P ∧ Q uimplies: supposing a nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: cons: [a b] uiff: uiff(P;Q) nat: ge: i ≥  subtype_rel: A ⊆B colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  list-cases reduce_tl_nil_lemma length_of_nil_lemma hd_wf nil_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf product_subtype_list reduce_hd_cons_lemma reduce_tl_cons_lemma length_of_cons_lemma combination_wf nat_plus_wf no_repeats_cons nat_properties intformle_wf int_formula_prop_le_lemma ge_wf less_than_wf not_wf l_member_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity equal_wf spread_cons_lemma itermAdd_wf int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int cons_wf cons_member list_wf no_repeats-subtype add-is-int-iff false_wf no_repeats_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename hypothesisEquality extract_by_obid isectElimination hypothesis dependent_functionElimination unionElimination sqequalRule independent_pairFormation productElimination cumulativity because_Cache independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp hypothesis_subsumption independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality lambdaFormation intWeakElimination independent_functionElimination applyEquality setEquality applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination inlFormation hyp_replacement inrFormation pointwiseFunctionality baseApply closedConclusion productEquality

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[L:Combination(n;A)].
    \{(hd(L)  \mmember{}  A)  \mwedge{}  (tl(L)  \mmember{}  Combination(n  -  1;\{a:A|  \mneg{}(a  =  hd(L))\}  ))\}



Date html generated: 2018_05_21-PM-08_08_25
Last ObjectModification: 2017_07_26-PM-05_44_07

Theory : general


Home Index