Nuprl Lemma : decidable-filter

[T:Type]
  ∀L:T List
    ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. ((∀x∈L.Dec(P[x]))  (∃L':T List. (L' ⊆ L ∧ (∀x:T. ((x ∈ L') ⇐⇒ (x ∈ L) ∧ P[x])))))


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B top: Top uimplies: supposing a not: ¬A false: False decidable: Dec(P) or: P ∨ Q guard: {T} cons: [a b] true: True sublist: L1 ⊆ L2 int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b squash: T ge: i ≥  le: A ≤ B nat: l_member: (x ∈ l)
Lemmas referenced :  list_induction uall_wf l_all_wf l_member_wf decidable_wf exists_wf list_wf sublist_wf all_wf iff_wf l_all_wf_nil cons_wf nil_wf nil-sublist null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l_all_cons cons_member cons_sublist_cons equal_wf and_wf list-cases product_subtype_list nil_sublist list-subtype subtype_rel_list int_seg_wf length_wf increasing_wf length_wf_nat select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf nat_properties l_member-settype set_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality because_Cache universeEquality hypothesis setElimination rename applyEquality functionExtensionality setEquality productEquality independent_functionElimination voidElimination voidEquality dependent_functionElimination dependent_pairFormation isect_memberEquality independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry productElimination unionElimination inlFormation inrFormation hyp_replacement dependent_set_memberEquality applyLambdaEquality promote_hyp hypothesis_subsumption natural_numberEquality addLevel levelHypothesis int_eqEquality intEquality computeAll imageElimination

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x\mmember{}L.Dec(P[x]))  {}\mRightarrow{}  (\mexists{}L':T  List.  (L'  \msubseteq{}  L  \mwedge{}  (\mforall{}x:T.  ((x  \mmember{}  L')  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L)  \mwedge{}  P[x])))))



Date html generated: 2017_10_01-AM-09_13_07
Last ObjectModification: 2017_07_26-PM-04_48_38

Theory : general


Home Index