Nuprl Lemma : fst-recode-tuple

[T:Type]. ∀[f:T ⟶ (T List × Top × Top)]. ∀[L:T List].
  ((fst((recode-tuple(f) L))) reduce(λT,X. ((fst((f T))) X);[];L) ∈ (T List))


Proof




Definitions occuring in Statement :  recode-tuple: recode-tuple(f) append: as bs reduce: reduce(f;k;as) nil: [] list: List uall: [x:A]. B[x] top: Top pi1: fst(t) apply: a lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  recode-tuple: recode-tuple(f) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi1: fst(t) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) spreadn: spread3 ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit uiff: uiff(P;Q) bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases reduce_nil_lemma list_ind_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma list_ind_cons_lemma list_wf top_wf list_ind_wf null_nil_lemma null_cons_lemma append_wf null_wf3 subtype_rel_list bool_wf eqtt_to_assert assert_of_null append-nil btrue_wf bfalse_wf and_wf btrue_neq_bfalse eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot pi1_wf_top subtype_rel_product
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality productEquality independent_pairEquality equalityElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  (T  List  \mtimes{}  Top  \mtimes{}  Top)].  \mforall{}[L:T  List].
    ((fst((recode-tuple(f)  L)))  =  reduce(\mlambda{}T,X.  ((fst((f  T)))  @  X);[];L))



Date html generated: 2018_05_21-PM-08_03_45
Last ObjectModification: 2017_07_26-PM-05_39_50

Theory : general


Home Index