Nuprl Lemma : l-ordered-inst

[T:Type]. ∀L:T List. ∀R:T ⟶ T ⟶ ℙ. ∀i:ℕ||L||. ∀j:ℕi.  (l-ordered(T;x,y.R[x;y];L)  R[L[j];L[i]])


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l-ordered: l-ordered(T;x,y.R[x; y];L) member: t ∈ T uimplies: supposing a guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T l_before: before y ∈ l sublist: L1 ⊆ L2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) le: A ≤ B bfalse: ff cand: c∧ B increasing: increasing(f;k) subtract: m sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  select: L[n] cons: [a b] eq_int: (i =z j) less_than': less_than'(a;b) nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] ge: i ≥  so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma length_of_cons_lemma length_of_nil_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int length_wf lelt_wf equal_wf int_seg_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_subtype false_wf int_seg_cases increasing_wf le_wf all_wf cons_wf nil_wf non_neg_length length_wf_nat nat_properties l-ordered_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin introduction extract_by_obid isectElimination because_Cache independent_isectElimination hypothesisEquality setElimination rename productElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageElimination independent_functionElimination equalityElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry cumulativity addEquality promote_hyp instantiate hypothesis_subsumption productEquality functionExtensionality applyEquality applyLambdaEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}i:\mBbbN{}||L||.  \mforall{}j:\mBbbN{}i.    (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  R[L[j];L[i]])



Date html generated: 2018_05_21-PM-07_37_32
Last ObjectModification: 2017_07_26-PM-05_11_42

Theory : general


Home Index