Nuprl Lemma : l-ordered-inst
∀[T:Type]. ∀L:T List. ∀R:T ⟶ T ⟶ ℙ. ∀i:ℕ||L||. ∀j:ℕi.  (l-ordered(T;x,y.R[x;y];L) ⇒ R[L[j];L[i]])
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
l_before: x before y ∈ l, 
sublist: L1 ⊆ L2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
le: A ≤ B, 
bfalse: ff, 
cand: A c∧ B, 
increasing: increasing(f;k), 
subtract: n - m, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
select: L[n], 
cons: [a / b], 
eq_int: (i =z j), 
less_than': less_than'(a;b), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
ge: i ≥ j , 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
length_wf, 
lelt_wf, 
equal_wf, 
int_seg_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_subtype_base, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
increasing_wf, 
le_wf, 
all_wf, 
cons_wf, 
nil_wf, 
non_neg_length, 
length_wf_nat, 
nat_properties, 
l-ordered_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
equalityElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
addEquality, 
promote_hyp, 
instantiate, 
hypothesis_subsumption, 
productEquality, 
functionExtensionality, 
applyEquality, 
applyLambdaEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}i:\mBbbN{}||L||.  \mforall{}j:\mBbbN{}i.    (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  R[L[j];L[i]])
Date html generated:
2018_05_21-PM-07_37_32
Last ObjectModification:
2017_07_26-PM-05_11_42
Theory : general
Home
Index