Nuprl Lemma : list-list-concat-type
∀[T:Type]. ∀[L:T List List]. (L ∈ {x:T| (x ∈ concat(L))} List List)
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
concat: concat(ll)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
or: P ∨ Q
,
cons: [a / b]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
nil: []
,
it: ⋅
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
subtype_rel: A ⊆r B
,
list_ind: list_ind,
reduce: reduce(f;k;as)
,
concat: concat(ll)
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
list_wf,
list-cases,
product_subtype_list,
colength-cons-not-zero,
colength_wf_list,
istype-le,
subtract-1-ge-0,
subtype_base_sq,
intformeq_wf,
int_formula_prop_eq_lemma,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
itermAdd_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
decidable__le,
le_wf,
istype-nat,
istype-universe,
l_member_wf,
nil_wf,
cons_wf,
equal_wf,
concat_wf,
less_than_irreflexivity,
less_than_transitivity1,
nat_wf,
equal-wf-T-base,
less_than_wf,
satisfiable-full-omega-tt,
reduce_cons_lemma,
list_ind_cons_lemma,
append_wf,
cons_member,
subtype_rel_list_set,
subtype_rel_list,
member_append,
concat-cons
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
thin,
lambdaFormation_alt,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
sqequalRule,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
universeIsType,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionIsTypeImplies,
inhabitedIsType,
unionElimination,
promote_hyp,
hypothesis_subsumption,
productElimination,
equalityIstype,
because_Cache,
dependent_set_memberEquality_alt,
instantiate,
applyLambdaEquality,
imageElimination,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
intEquality,
sqequalBase,
isectIsTypeImplies,
universeEquality,
cumulativity,
setEquality,
addEquality,
dependent_set_memberEquality,
computeAll,
voidEquality,
isect_memberEquality,
lambdaEquality,
dependent_pairFormation,
lambdaFormation,
inlFormation_alt,
setIsType,
inrFormation_alt,
inrFormation
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List List]. (L \mmember{} \{x:T| (x \mmember{} concat(L))\} List List)
Date html generated:
2019_10_15-AM-11_12_18
Last ObjectModification:
2019_06_26-PM-03_55_26
Theory : general
Home
Index