Nuprl Lemma : list-list-concat-type

[T:Type]. ∀[L:T List List].  (L ∈ {x:T| (x ∈ concat(L))}  List List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) concat: concat(ll) list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B list_ind: list_ind reduce: reduce(f;k;as) concat: concat(ll) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list_wf list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat istype-universe l_member_wf nil_wf cons_wf equal_wf concat_wf less_than_irreflexivity less_than_transitivity1 nat_wf equal-wf-T-base less_than_wf satisfiable-full-omega-tt reduce_cons_lemma list_ind_cons_lemma append_wf cons_member subtype_rel_list_set subtype_rel_list member_append concat-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase isectIsTypeImplies universeEquality cumulativity setEquality addEquality dependent_set_memberEquality computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation lambdaFormation inlFormation_alt setIsType inrFormation_alt inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List  List].    (L  \mmember{}  \{x:T|  (x  \mmember{}  concat(L))\}    List  List)



Date html generated: 2019_10_15-AM-11_12_18
Last ObjectModification: 2019_06_26-PM-03_55_26

Theory : general


Home Index