Nuprl Lemma : same-final-iterate-one-one
∀[A:Type]
  ∀f:A ⟶ (A + Top)
    (SWellFounded(p-graph(A;f) y x)
    
⇒ ∀x,y:A.
         ∃n:ℕ. ((p-graph(A;f^n) x y) ∨ (p-graph(A;f^n) y x)) supposing final-iterate(f;x) = final-iterate(f;y) ∈ A 
       supposing p-inject(A;A;f))
Proof
Definitions occuring in Statement : 
final-iterate: final-iterate(f;x)
, 
p-graph: p-graph(A;f)
, 
p-inject: p-inject(A;B;f)
, 
p-fun-exp: f^n
, 
strongwellfounded: SWellFounded(R[x; y])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
p-graph: p-graph(A;f)
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
le: A ≤ B
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
p-inject: p-inject(A;B;f)
Lemmas referenced : 
final-iterate-property, 
decidable__le, 
final-iterate_wf, 
p-inject_wf, 
strongwellfounded_wf, 
p-graph_wf2, 
subtype_rel_self, 
istype-top, 
istype-universe, 
subtract_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-assert, 
can-apply_wf, 
p-fun-exp_wf, 
subtype_rel_dep_function, 
top_wf, 
subtype_rel_union, 
do-apply_wf, 
can-apply-fun-exp, 
trivial-int-eq1, 
can-apply-fun-exp-add, 
p-fun-exp-injection, 
minus-one-mul, 
add-commutes, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
assert_wf, 
add-swap, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
productElimination, 
setElimination, 
rename, 
unionElimination, 
equalityIstype, 
independent_isectElimination, 
universeIsType, 
lambdaEquality_alt, 
applyEquality, 
instantiate, 
inhabitedIsType, 
functionIsType, 
unionIsType, 
universeEquality, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
inlFormation_alt, 
productIsType, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
intEquality, 
applyLambdaEquality, 
promote_hyp, 
hyp_replacement, 
functionEquality, 
inrFormation_alt
Latex:
\mforall{}[A:Type]
    \mforall{}f:A  {}\mrightarrow{}  (A  +  Top)
        (SWellFounded(p-graph(A;f)  y  x)
        {}\mRightarrow{}  \mforall{}x,y:A.
                  \mexists{}n:\mBbbN{}.  ((p-graph(A;f\^{}n)  x  y)  \mvee{}  (p-graph(A;f\^{}n)  y  x)) 
                  supposing  final-iterate(f;x)  =  final-iterate(f;y) 
              supposing  p-inject(A;A;f))
Date html generated:
2020_05_20-AM-08_09_14
Last ObjectModification:
2020_01_28-PM-04_51_04
Theory : general
Home
Index