Nuprl Lemma : same-final-iterate-one-one

[A:Type]
  ∀f:A ⟶ (A Top)
    (SWellFounded(p-graph(A;f) x)
     ∀x,y:A.
         ∃n:ℕ((p-graph(A;f^n) y) ∨ (p-graph(A;f^n) x)) supposing final-iterate(f;x) final-iterate(f;y) ∈ 
       supposing p-inject(A;A;f))


Proof




Definitions occuring in Statement :  final-iterate: final-iterate(f;x) p-graph: p-graph(A;f) p-inject: p-inject(A;B;f) p-fun-exp: f^n strongwellfounded: SWellFounded(R[x; y]) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a p-graph: p-graph(A;f) member: t ∈ T exists: x:A. B[x] cand: c∧ B and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2] ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} le: A ≤ B subtract: m sq_type: SQType(T) p-inject: p-inject(A;B;f)
Lemmas referenced :  final-iterate-property decidable__le final-iterate_wf p-inject_wf strongwellfounded_wf p-graph_wf2 subtype_rel_self istype-top istype-universe subtract_wf nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-assert can-apply_wf p-fun-exp_wf subtype_rel_dep_function top_wf subtype_rel_union do-apply_wf can-apply-fun-exp trivial-int-eq1 can-apply-fun-exp-add p-fun-exp-injection minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add subtype_base_sq int_subtype_base equal_wf assert_wf add-swap add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis because_Cache productElimination setElimination rename unionElimination equalityIstype independent_isectElimination universeIsType lambdaEquality_alt applyEquality instantiate inhabitedIsType functionIsType unionIsType universeEquality dependent_pairFormation_alt dependent_set_memberEquality_alt natural_numberEquality approximateComputation int_eqEquality Error :memTop,  independent_pairFormation voidElimination inlFormation_alt productIsType unionEquality equalityTransitivity equalitySymmetry cumulativity intEquality applyLambdaEquality promote_hyp hyp_replacement functionEquality inrFormation_alt

Latex:
\mforall{}[A:Type]
    \mforall{}f:A  {}\mrightarrow{}  (A  +  Top)
        (SWellFounded(p-graph(A;f)  y  x)
        {}\mRightarrow{}  \mforall{}x,y:A.
                  \mexists{}n:\mBbbN{}.  ((p-graph(A;f\^{}n)  x  y)  \mvee{}  (p-graph(A;f\^{}n)  y  x)) 
                  supposing  final-iterate(f;x)  =  final-iterate(f;y) 
              supposing  p-inject(A;A;f))



Date html generated: 2020_05_20-AM-08_09_14
Last ObjectModification: 2020_01_28-PM-04_51_04

Theory : general


Home Index