Nuprl Lemma : Markov-inequality

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X:RandomVariable(p;n)].  ∀[e:ℚ]. E(n;e ≤ X) ≤ (E(n;X)/e) supposing 0 < supposing 0 ≤ X


Proof




Definitions occuring in Statement :  rv-le: X ≤ Y expectation: E(n;F) rv-const: a rv-qle: A ≤ B random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qle: r ≤ s qless: r < s qdiv: (r/s) rationals: nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q guard: {T} subtype_rel: A ⊆B false: False prop: squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q qdiv: (r/s) uiff: uiff(P;Q) rv-scale: q*X rv-const: a rv-qle: A ≤ B rv-le: X ≤ Y all: x:A. B[x] nat: random-variable: RandomVariable(p;n) p-outcome: Outcome rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  qle_witness expectation_wf rv-qle_wf rv-const_wf qdiv_wf qless_transitivity_2_qorder int-subtype-rationals qle_weakening_eq_qorder qless_irreflexivity equal-wf-T-base rationals_wf qless_wf rv-le_wf random-variable_wf nat_wf finite-prob-space_wf equal_wf squash_wf true_wf expectation-rv-scale iff_weakening_equal expectation-monotone rv-scale_wf qle_wf assert-qeq assert_wf qeq_wf2 not_wf qmul_wf qinv_wf qmul_assoc_qrng qmul_one_qrng qmul_comm_qrng qinv-positive int_seg_wf p-outcome_wf q_le_wf bool_wf qmul_preserves_qle bnot_wf uiff_transitivity2 eqtt_to_assert assert-q_le-eq uiff_transitivity eqff_to_assert assert_of_bnot qmul_ac_1_qrng qmul-qdiv-cancel qmul_zero_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination lambdaFormation natural_numberEquality applyEquality sqequalRule voidElimination baseClosed independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination universeEquality imageMemberEquality productElimination hyp_replacement applyLambdaEquality addLevel impliesFunctionality dependent_functionElimination functionEquality setElimination rename functionExtensionality unionElimination equalityElimination

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X:RandomVariable(p;n)].
    \mforall{}[e:\mBbbQ{}].  E(n;e  \mleq{}  X)  \mleq{}  (E(n;X)/e)  supposing  0  <  e  supposing  0  \mleq{}  X



Date html generated: 2018_05_22-AM-00_35_59
Last ObjectModification: 2017_07_26-PM-07_00_21

Theory : randomness


Home Index