Nuprl Lemma : uniform-fps_wf

[n:ℕ+]. (uniform-fps(n) ∈ FinProbSpace)


Proof




Definitions occuring in Statement :  uniform-fps: uniform-fps(n) finite-prob-space: FinProbSpace nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-fps: uniform-fps(n) finite-prob-space: FinProbSpace uimplies: supposing a subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top cand: c∧ B decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B qdiv: (r/s) qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) qinv: 1/r l_all: (∀x∈L.P[x]) nat: uiff: uiff(P;Q)
Lemmas referenced :  map_wf qdiv_wf int_nzero-rational subtype_rel_sets less_than_wf nequal_wf nat_plus_properties int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base map-length length_upto equal-wf-T-base qsum_wf select_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma decidable__lt length_wf rationals_wf l_all_wf2 l_member_wf qle_wf nat_plus_wf equal_wf squash_wf true_wf qsum-const nat_plus_subtype_nat subtype_rel_set int-subtype-rationals iff_weakening_equal qmul-qdiv-cancel int_seg_wf select-map upto_wf subtype_rel_list top_wf lelt_wf map_length_nat nat_wf qinv-nonneg qless-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality independent_isectElimination hypothesisEquality applyEquality intEquality natural_numberEquality hypothesis setElimination rename setEquality lambdaFormation applyLambdaEquality equalityTransitivity equalitySymmetry productElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination productEquality unionElimination imageElimination axiomEquality universeEquality imageMemberEquality hyp_replacement

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (uniform-fps(n)  \mmember{}  FinProbSpace)



Date html generated: 2018_05_22-AM-00_33_27
Last ObjectModification: 2017_07_26-PM-06_59_44

Theory : randomness


Home Index