Nuprl Lemma : uniform-fps_wf
∀[n:ℕ+]. (uniform-fps(n) ∈ FinProbSpace)
Proof
Definitions occuring in Statement : 
uniform-fps: uniform-fps(n)
, 
finite-prob-space: FinProbSpace
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uniform-fps: uniform-fps(n)
, 
finite-prob-space: FinProbSpace
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
qdiv: (r/s)
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
qinv: 1/r
, 
l_all: (∀x∈L.P[x])
, 
nat: ℕ
, 
uiff: uiff(P;Q)
Lemmas referenced : 
map_wf, 
qdiv_wf, 
int_nzero-rational, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
nat_plus_properties, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
map-length, 
length_upto, 
equal-wf-T-base, 
qsum_wf, 
select_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
decidable__lt, 
length_wf, 
rationals_wf, 
l_all_wf2, 
l_member_wf, 
qle_wf, 
nat_plus_wf, 
equal_wf, 
squash_wf, 
true_wf, 
qsum-const, 
nat_plus_subtype_nat, 
subtype_rel_set, 
int-subtype-rationals, 
iff_weakening_equal, 
qmul-qdiv-cancel, 
int_seg_wf, 
select-map, 
upto_wf, 
subtype_rel_list, 
top_wf, 
lelt_wf, 
map_length_nat, 
nat_wf, 
qinv-nonneg, 
qless-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
hypothesisEquality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
independent_functionElimination, 
productEquality, 
unionElimination, 
imageElimination, 
axiomEquality, 
universeEquality, 
imageMemberEquality, 
hyp_replacement
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (uniform-fps(n)  \mmember{}  FinProbSpace)
Date html generated:
2018_05_22-AM-00_33_27
Last ObjectModification:
2017_07_26-PM-06_59_44
Theory : randomness
Home
Index