Nuprl Lemma : q-constraint-sum

[x,x':ℕ ⟶ ℚ]. ∀[r1,r2:ℤ]. ∀[k:ℕ]. ∀[y:ℚ List].
  (q-rel(q-rel-lub(r1;r2);q-linear(k;j.(x j) (x' j);y))) supposing 
     (q-rel(r2;q-linear(k;j.x' j;y)) and 
     q-rel(r1;q-linear(k;j.x j;y)) and 
     (k ≤ ||y||))


Proof




Definitions occuring in Statement :  q-rel-lub: q-rel-lub(r1;r2) q-rel: q-rel(r;x) q-linear: q-linear(k;i.X[i];y) qadd: s rationals: length: ||as|| list: List nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q q-rel: q-rel(r;x) ifthenelse: if then else fi  all: x:A. B[x] bool: 𝔹 nat: q-rel-lub: q-rel-lub(r1;r2) uiff: uiff(P;Q) band: p ∧b q btrue: tt not: ¬A false: False eq_int: (i =z j) bfalse: ff unit: Unit it:
Lemmas referenced :  q-rel_wf squash_wf true_wf rationals_wf q-rel-lub_wf q-linear-sum nat_wf subtype_rel_self iff_weakening_equal equal-wf-base-T q-linear_wf qadd_wf qle_witness int-subtype-rationals qle_wf qless_witness qless_wf equal_wf ifthenelse_wf eq_int_wf le_wf length_wf list_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf qadd_preserves_qle qadd_preserves_qless qle_transitivity_qorder qless_transitivity_1_qorder qless_transitivity_2_qorder qless_transitivity uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot qadd_comm_q mon_ident_q qle_weakening_eq_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality sqequalRule independent_isectElimination natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality productElimination independent_functionElimination because_Cache lambdaFormation unionElimination axiomEquality dependent_functionElimination isect_memberEquality setElimination rename functionEquality baseApply closedConclusion applyLambdaEquality voidElimination equalityElimination independent_pairFormation

Latex:
\mforall{}[x,x':\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[r1,r2:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[y:\mBbbQ{}  List].
    (q-rel(q-rel-lub(r1;r2);q-linear(k;j.(x  j)  +  (x'  j);y)))  supposing 
          (q-rel(r2;q-linear(k;j.x'  j;y))  and 
          q-rel(r1;q-linear(k;j.x  j;y))  and 
          (k  \mleq{}  ||y||))



Date html generated: 2019_10_16-PM-00_33_30
Last ObjectModification: 2018_08_25-AM-10_26_47

Theory : rationals


Home Index