Nuprl Lemma : oal_lk_in_dom

s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  ((¬(ps 00 ∈ |oal(s;g)|))  (↑(lk(ps) ∈b dom(ps))))


Proof




Definitions occuring in Statement :  oal_lk: lk(ps) oal_dom: dom(ps) oal_nil: 00 oalist: oal(a;b) mset_mem: mset_mem assert: b all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B loset: LOSet poset: POSet{i} qoset: QOSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] guard: {T} not: ¬A false: False dset: DSet oal_nil: 00 and: P ∧ Q cand: c∧ B assert: b ifthenelse: if then else fi  sd_ordered: sd_ordered(as) ycomb: Y list_ind: list_ind map: map(f;as) nil: [] it: btrue: tt true: True mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) grp_id: e pi2: snd(t) bor_mon: <𝔹,∨b> bfalse: ff abdmonoid: AbDMon dmon: DMon mon: Mon grp_car: |g| oal_lk: lk(ps) top: Top mset_inj: mset_inj{s}(x) oal_dom: dom(ps) mset_sum: b mk_mset: mk_mset(as) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] infix_ap: y iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q list: List
Lemmas referenced :  oalist_cases_a not_wf equal_wf set_car_wf oalist_wf oal_nil_wf assert_wf mset_mem_wf oal_lk_wf oal_dom_wf abdmonoid_abmonoid abdmonoid_wf loset_wf equal-wf-base-T mem_wf dset_of_mon_wf grp_id_wf subtype_rel_self dset_of_mon_wf0 nil_wf grp_car_wf sd_ordered_wf map_wf cons_pr_in_oalist before_wf set_prod_wf reduce_hd_cons_lemma istype-void list_ind_cons_lemma list_ind_nil_lemma map_cons_lemma mset_mem_inj_sum_lemma iff_transitivity bor_wf set_eq_wf or_wf member_wf iff_weakening_uiff assert_of_bor assert_of_dset_eq list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt functionEquality isectElimination hypothesis applyEquality because_Cache setElimination rename independent_functionElimination universeIsType voidElimination inhabitedIsType equalityTransitivity equalitySymmetry baseClosed natural_numberEquality independent_pairFormation dependent_set_memberEquality_alt productEquality productIsType productElimination isect_memberEquality_alt unionElimination inlFormation_alt inrFormation_alt equalityIsType1 unionIsType setEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (\muparrow{}(lk(ps)  \mmember{}\msubb{}  dom(ps))))



Date html generated: 2019_10_16-PM-01_07_53
Last ObjectModification: 2018_10_08-PM-06_38_12

Theory : polynom_2


Home Index