Nuprl Lemma : oal_lk_in_dom
∀s:LOSet. ∀g:AbDMon. ∀ps:|oal(s;g)|.  ((¬(ps = 00 ∈ |oal(s;g)|)) ⇒ (↑(lk(ps) ∈b dom(ps))))
Proof
Definitions occuring in Statement : 
oal_lk: lk(ps), 
oal_dom: dom(ps), 
oal_nil: 00, 
oalist: oal(a;b), 
mset_mem: mset_mem, 
assert: ↑b, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
so_apply: x[s], 
guard: {T}, 
not: ¬A, 
false: False, 
dset: DSet, 
oal_nil: 00, 
and: P ∧ Q, 
cand: A c∧ B, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
sd_ordered: sd_ordered(as), 
ycomb: Y, 
list_ind: list_ind, 
map: map(f;as), 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
mem: a ∈b as, 
mon_for: For{g} x ∈ as. f[x], 
for: For{T,op,id} x ∈ as. f[x], 
reduce: reduce(f;k;as), 
grp_id: e, 
pi2: snd(t), 
bor_mon: <𝔹,∨b>, 
bfalse: ff, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
grp_car: |g|, 
oal_lk: lk(ps), 
top: Top, 
mset_inj: mset_inj{s}(x), 
oal_dom: dom(ps), 
mset_sum: a + b, 
mk_mset: mk_mset(as), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
infix_ap: x f y, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
list: T List
Lemmas referenced : 
oalist_cases_a, 
not_wf, 
equal_wf, 
set_car_wf, 
oalist_wf, 
oal_nil_wf, 
assert_wf, 
mset_mem_wf, 
oal_lk_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
abdmonoid_wf, 
loset_wf, 
equal-wf-base-T, 
mem_wf, 
dset_of_mon_wf, 
grp_id_wf, 
subtype_rel_self, 
dset_of_mon_wf0, 
nil_wf, 
grp_car_wf, 
sd_ordered_wf, 
map_wf, 
cons_pr_in_oalist, 
before_wf, 
set_prod_wf, 
reduce_hd_cons_lemma, 
istype-void, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
map_cons_lemma, 
mset_mem_inj_sum_lemma, 
iff_transitivity, 
bor_wf, 
set_eq_wf, 
or_wf, 
member_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
independent_functionElimination, 
universeIsType, 
voidElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
natural_numberEquality, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productEquality, 
productIsType, 
productElimination, 
isect_memberEquality_alt, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
equalityIsType1, 
unionIsType, 
setEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (\muparrow{}(lk(ps)  \mmember{}\msubb{}  dom(ps))))
Date html generated:
2019_10_16-PM-01_07_53
Last ObjectModification:
2018_10_08-PM-06_38_12
Theory : polynom_2
Home
Index