Nuprl Lemma : Accum-class-progress

[Info,B,A:Type].
  ∀R:B ─→ B ─→ ℙ. ∀P:A ─→ B ─→ ℙ. ∀f:A ─→ B ─→ B. ∀init:Id ─→ bag(B). ∀X:EClass(A). ∀es:EO+(Info). ∀e1,e2:E. ∀v1,v2:B.
    ((∀a:A. ∀s:B.  Dec(P[a;s]))
     Trans(B;x,y.R[x;y])
     (∀s1,s2:B.  SqStable(R[s1;s2]))
     (∀a:A. ∀e:E. ∀s:B.
          ((e1 <loc e)
           e ≤loc e2 
           a ∈ X(e)
           s ∈ Prior(Accum-class(f;init;X))?init(e)
           ((P[a;s]  R[s;f s]) ∧ ((¬P[a;s])  (s (f s) ∈ B)))))
     single-valued-classrel(es;X;A)
     single-valued-bag(init loc(e1);B)
     v1 ∈ Accum-class(f;init;X)(e1)
     v2 ∈ Accum-class(f;init;X)(e2)
     (e1 <loc e2)
     (((∃e:E. ∃a:A. ∃s:B. ((e1 <loc e) ∧ e ≤loc e2  ∧ s ∈ Prior(Accum-class(f;init;X))?init(e) ∧ a ∈ X(e) ∧ P[a;s]))
        R[v1;v2])
       ∧ ((∀e:E. ∀s:B.
             ((e1 <loc e)
              e ≤loc e2 
              s ∈ Prior(Accum-class(f;init;X))?init(e)
              (∀a:A. ((¬a ∈ X(e)) ∨ P[a;s])))))
          (v1 v2 ∈ B))))


Proof




Definitions occuring in Statement :  Accum-class: Accum-class(f;init;X) primed-class-opt: Prior(X)?b single-valued-classrel: single-valued-classrel(es;X;T) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e ≤loc e'  es-locl: (e <loc e') es-loc: loc(e) es-E: E Id: Id trans: Trans(T;x,y.E[x; y]) sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T single-valued-bag: single-valued-bag(b;T) bag: bag(T)
Lemmas :  es-causl-swellfnd less_than_wf decidable__lt subtract_wf false_wf condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes less-iff-le add_functionality_wrt_le add-associates le-add-cancel es-causl_wf rec-combined-class-opt-1-classrel simple-comb-2-classrel primed-class-opt_wf rec-combined-class-opt-1_wf lifting-2_wf sq_stable__and exists_wf es-locl_wf es-le_wf classrel_wf all_wf or_wf not_wf sq_stable__all equal_wf sq_stable__equal squash_wf primed-class-opt-classrel es-locl-trichotomy Accum-class_wf single-valued-bag_wf es-loc_wf single-valued-classrel_wf sq_stable_wf trans_wf decidable_wf nat_wf set_wf primrec-wf2 zero-le-nat le_wf add-mul-special zero-mul add-zero es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf Id_wf bag_wf es-causl_weakening es-locl_transitivity1 es-le_weakening es-le-self and_wf Prior-Accum-class-single-val0 decidable__existse-between3 assert_wf es-first_wf2 Memory-class_wf bag-member_wf iterated_classrel_wf es-pred_wf subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool bfalse_wf decidable__exists_iterated_classrel es-loc-pred decidable_functionality Memory-classrel and_false_l or_false_l decidable__exists-single-valued-classrel iterated_classrel-single-val Accum-class-single-val0 es-le_weakening_eq

Latex:
\mforall{}[Info,B,A:Type].
    \mforall{}R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B.  \mforall{}init:Id  {}\mrightarrow{}  bag(B).  \mforall{}X:EClass(A).  \mforall{}es:EO+(Info).
    \mforall{}e1,e2:E.  \mforall{}v1,v2:B.
        ((\mforall{}a:A.  \mforall{}s:B.    Dec(P[a;s]))
        {}\mRightarrow{}  Trans(B;x,y.R[x;y])
        {}\mRightarrow{}  (\mforall{}s1,s2:B.    SqStable(R[s1;s2]))
        {}\mRightarrow{}  (\mforall{}a:A.  \mforall{}e:E.  \mforall{}s:B.
                    ((e1  <loc  e)
                    {}\mRightarrow{}  e  \mleq{}loc  e2 
                    {}\mRightarrow{}  a  \mmember{}  X(e)
                    {}\mRightarrow{}  s  \mmember{}  Prior(Accum-class(f;init;X))?init(e)
                    {}\mRightarrow{}  ((P[a;s]  {}\mRightarrow{}  R[s;f  a  s])  \mwedge{}  ((\mneg{}P[a;s])  {}\mRightarrow{}  (s  =  (f  a  s))))))
        {}\mRightarrow{}  single-valued-classrel(es;X;A)
        {}\mRightarrow{}  single-valued-bag(init  loc(e1);B)
        {}\mRightarrow{}  v1  \mmember{}  Accum-class(f;init;X)(e1)
        {}\mRightarrow{}  v2  \mmember{}  Accum-class(f;init;X)(e2)
        {}\mRightarrow{}  (e1  <loc  e2)
        {}\mRightarrow{}  (((\mexists{}e:E
                      \mexists{}a:A
                        \mexists{}s:B
                          ((e1  <loc  e)
                          \mwedge{}  e  \mleq{}loc  e2 
                          \mwedge{}  s  \mmember{}  Prior(Accum-class(f;init;X))?init(e)
                          \mwedge{}  a  \mmember{}  X(e)
                          \mwedge{}  P[a;s]))
              {}\mRightarrow{}  R[v1;v2])
              \mwedge{}  ((\mforall{}e:E.  \mforall{}s:B.
                          ((e1  <loc  e)
                          {}\mRightarrow{}  e  \mleq{}loc  e2 
                          {}\mRightarrow{}  s  \mmember{}  Prior(Accum-class(f;init;X))?init(e)
                          {}\mRightarrow{}  (\mforall{}a:A.  ((\mneg{}a  \mmember{}  X(e))  \mvee{}  (\mneg{}P[a;s])))))
                  {}\mRightarrow{}  (v1  =  v2))))



Date html generated: 2015_07_22-PM-00_19_07
Last ObjectModification: 2015_07_16-AM-09_39_15

Home Index