Nuprl Lemma : prior-or-latest

[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  ((X |- Y))' ((X)' (Y)') ∈ EClass(one_or_both(A;B)) supposing Singlevalued(X) ∧ Singlevalued(Y)


Proof




Definitions occuring in Statement :  es-or-latest: (X |- Y) es-prior-val: (X)' es-interface-or: (X Y) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T one_or_both: one_or_both(A;B)
Lemmas :  es-locl_wf assert_wf in-eclass_wf exists_wf es-E_wf event-ordering+_subtype or_wf es-interface-subtype_rel2 top_wf is-prior-val one_or_both_wf es-or-latest_wf is-or-latest subtype_top es-prior-val_wf is-interface-or es-interface-or_wf all_wf iff_wf sv-class_wf event-ordering+_wf eclass_wf es-interface-extensionality bool_wf eqtt_to_assert bag_size_single_lemma false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma es-prior-interface_wf1 es-E-interface_wf prior-val-val eclass-val_wf prior-val-as-latest-val es-latest-val_wf or-latest-val interface-or-val iff_weakening_equal is-latest-val es-le_weakening_eq es-le_wf eq_int_wf bag-size_wf nat_wf equal-wf-T-base bnot_wf not_wf squash_wf true_wf uiff_transitivity assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot oobboth_wf bag-only_wf2 single-valued-bag_wf less_than_wf bag_wf single-valued-bag-if-le1 le_weakening decidable__lt le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel add-commutes zero-add oobleft_wf oobright_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    ((X  |\msupminus{}  Y))'  =  ((X)'  |  (Y)')  supposing  Singlevalued(X)  \mwedge{}  Singlevalued(Y)



Date html generated: 2015_07_21-PM-04_24_13
Last ObjectModification: 2015_02_04-PM-06_03_24

Home Index