Nuprl Lemma : prior-or-latest
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  ((X |- Y))' = ((X)' | (Y)') ∈ EClass(one_or_both(A;B)) supposing Singlevalued(X) ∧ Singlevalued(Y)
Proof
Definitions occuring in Statement : 
es-or-latest: (X |- Y)
, 
es-prior-val: (X)'
, 
es-interface-or: (X | Y)
, 
sv-class: Singlevalued(X)
, 
eclass: EClass(A[eo; e])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
one_or_both: one_or_both(A;B)
Lemmas : 
es-locl_wf, 
assert_wf, 
in-eclass_wf, 
exists_wf, 
es-E_wf, 
event-ordering+_subtype, 
or_wf, 
es-interface-subtype_rel2, 
top_wf, 
is-prior-val, 
one_or_both_wf, 
es-or-latest_wf, 
is-or-latest, 
subtype_top, 
es-prior-val_wf, 
is-interface-or, 
es-interface-or_wf, 
all_wf, 
iff_wf, 
sv-class_wf, 
event-ordering+_wf, 
eclass_wf, 
es-interface-extensionality, 
bool_wf, 
eqtt_to_assert, 
bag_size_single_lemma, 
false_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag_size_empty_lemma, 
es-prior-interface_wf1, 
es-E-interface_wf, 
prior-val-val, 
eclass-val_wf, 
prior-val-as-latest-val, 
es-latest-val_wf, 
or-latest-val, 
interface-or-val, 
iff_weakening_equal, 
is-latest-val, 
es-le_weakening_eq, 
es-le_wf, 
eq_int_wf, 
bag-size_wf, 
nat_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
squash_wf, 
true_wf, 
uiff_transitivity, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
oobboth_wf, 
bag-only_wf2, 
single-valued-bag_wf, 
less_than_wf, 
bag_wf, 
single-valued-bag-if-le1, 
le_weakening, 
decidable__lt, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
add-commutes, 
zero-add, 
oobleft_wf, 
oobright_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    ((X  |\msupminus{}  Y))'  =  ((X)'  |  (Y)')  supposing  Singlevalued(X)  \mwedge{}  Singlevalued(Y)
Date html generated:
2015_07_21-PM-04_24_13
Last ObjectModification:
2015_02_04-PM-06_03_24
Home
Index