Nuprl Lemma : expectation-rv-sample
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[i:ℕn]. ∀[X:Outcome ─→ ℚ].  (E(n;X@i) = weighted-sum(p;X) ∈ ℚ)
Proof
Definitions occuring in Statement : 
expectation: E(n;F)
, 
rv-sample: X@i
, 
weighted-sum: weighted-sum(p;F)
, 
p-outcome: Outcome
, 
finite-prob-space: FinProbSpace
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rationals: ℚ
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
p-outcome_wf, 
rationals_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf, 
finite-prob-space_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
decidable__equal_int, 
le_weakening2, 
rv-sample_wf, 
rv-shift_wf, 
le_wf, 
not-le-2, 
expectation-constant, 
true_wf, 
squash_wf, 
weighted-sum_wf2, 
subtype_base_sq, 
equal_wf, 
expectation_wf, 
ws-constant, 
length_wf, 
lelt_wf, 
le-add-cancel-alt, 
decidable__lt, 
minus-zero, 
sq_stable__le, 
not-equal-2, 
equal-wf-T-base, 
bool_wf, 
eq_int_wf
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n].  \mforall{}[X:Outcome  {}\mrightarrow{}  \mBbbQ{}].    (E(n;X@i)  =  weighted-sum(p;X))
Date html generated:
2015_07_17-AM-07_59_03
Last ObjectModification:
2015_07_16-AM-09_52_18
Home
Index