Nuprl Lemma : face-or-list-eq-1
∀[Gamma:j⊢]
  ∀L:{Gamma ⊢ _:𝔽} List. ∀I:fset(ℕ). ∀rho:Gamma(I).
    (\/(L)(rho) = 1 ∈ Point(face_lattice(I)) 
⇐⇒ (∃x∈L. x(rho) = 1 ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
face-or-list: \/(L)
, 
face-type: 𝔽
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
face_lattice: face_lattice(I)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
l_exists: (∃x∈L. P[x])
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
, 
lattice-1: 1
, 
lattice-point: Point(l)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cubical-term-at: u(a)
, 
face-or-list: \/(L)
, 
face-0: 0(𝔽)
, 
not: ¬A
, 
false: False
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
cubical-term_wf, 
face-type_wf, 
all_wf, 
fset_wf, 
nat_wf, 
I_cube_wf, 
iff_wf, 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
cubical-term-at_wf, 
face-or-list_wf, 
lattice-1_wf, 
l_exists_wf, 
l_member_wf, 
subtype_rel_self, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
list_wf, 
cubical_set_wf, 
reduce_nil_lemma, 
lattice-0_wf, 
l_exists_wf_nil, 
istype-void, 
face-lattice-0-not-1, 
stuck-spread, 
istype-base, 
length_of_nil_lemma, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
reduce_cons_lemma, 
exists_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
l_exists_cons, 
face-or_wf, 
cons_wf, 
face-or-eq-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
cumulativity, 
universeIsType, 
universeEquality, 
because_Cache, 
setElimination, 
rename, 
productEquality, 
isectEquality, 
independent_isectElimination, 
setIsType, 
independent_functionElimination, 
functionIsType, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
productElimination, 
baseClosed, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
closedConclusion, 
imageElimination, 
unionElimination, 
promote_hyp, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[Gamma:j\mvdash{}]
    \mforall{}L:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  List.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).    (\mbackslash{}/(L)(rho)  =  1  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  x(rho)  =  1))
Date html generated:
2020_05_20-PM-02_42_30
Last ObjectModification:
2020_04_04-PM-04_56_31
Theory : cubical!type!theory
Home
Index