Nuprl Lemma : face-or-list-eq-1

[Gamma:j⊢]
  ∀L:{Gamma ⊢ _:𝔽List. ∀I:fset(ℕ). ∀rho:Gamma(I).
    (\/(L)(rho) 1 ∈ Point(face_lattice(I)) ⇐⇒ (∃x∈L. x(rho) 1 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  face-or-list: \/(L) face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) l_exists: (∃x∈L. P[x]) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q iff: ⇐⇒ Q rev_implies:  Q cubical-term-at: u(a) face-or-list: \/(L) face-0: 0(𝔽) not: ¬A false: False l_exists: (∃x∈L. P[x]) exists: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  list_induction cubical-term_wf face-type_wf all_wf fset_wf nat_wf I_cube_wf iff_wf equal_wf lattice-point_wf face_lattice_wf cubical-term-at_wf face-or-list_wf lattice-1_wf l_exists_wf l_member_wf subtype_rel_self subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf list_wf cubical_set_wf reduce_nil_lemma lattice-0_wf l_exists_wf_nil istype-void face-lattice-0-not-1 stuck-spread istype-base length_of_nil_lemma int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf reduce_cons_lemma exists_wf int_seg_wf length_wf select_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt l_exists_cons face-or_wf cons_wf face-or-eq-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality cumulativity universeIsType universeEquality because_Cache setElimination rename productEquality isectEquality independent_isectElimination setIsType independent_functionElimination functionIsType productIsType equalityIstype inhabitedIsType dependent_functionElimination Error :memTop,  independent_pairFormation equalityTransitivity equalitySymmetry voidElimination productElimination baseClosed natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality closedConclusion imageElimination unionElimination promote_hyp unionIsType inlFormation_alt inrFormation_alt

Latex:
\mforall{}[Gamma:j\mvdash{}]
    \mforall{}L:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  List.  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).    (\mbackslash{}/(L)(rho)  =  1  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  x(rho)  =  1))



Date html generated: 2020_05_20-PM-02_42_30
Last ObjectModification: 2020_04_04-PM-04_56_31

Theory : cubical!type!theory


Home Index