Nuprl Lemma : glue-morph-id

Gamma:j⊢. ∀A:{Gamma ⊢ _}. ∀phi:{Gamma ⊢ _:𝔽}. ∀T:{Gamma, phi ⊢ _}. ∀w:{Gamma, phi ⊢ _:(T ⟶ A)}. ∀I:fset(ℕ).
a:Gamma(I). ∀u:glue-cube(Gamma;A;phi;T;w;I;a).
  (glue-morph(Gamma;A;phi;T;w;I;a;I;1;u) u ∈ glue-cube(Gamma;A;phi;T;w;I;a))


Proof




Definitions occuring in Statement :  glue-morph: glue-morph(Gamma;A;phi;T;w;I;rho;J;f;u) glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet nh-id: 1 fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) glue-morph: glue-morph(Gamma;A;phi;T;w;I;rho;J;f;u) cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A context-subset: Gamma, phi
Lemmas referenced :  equal-glue-cube glue-morph_wf nh-id_wf subtype_rel-equal glue-cube_wf cube-set-restriction_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-id subtype_rel_self iff_weakening_equal fl-eq_wf cubical-term-at_wf face-type_wf lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf I_cube_wf fset_wf nat_wf istype-cubical-term context-subset_wf cubical-fun_wf thin-context-subset cubical-type_wf cubical_set_wf iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff istype-true cubical-type-ap-morph-id I_cube_pair_redex_lemma bfalse_wf false_wf istype-void names-hom_wf nh-id-right cubical-type-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_functionElimination hypothesis applyEquality independent_isectElimination instantiate lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination inhabitedIsType unionElimination equalityElimination productEquality cumulativity isectEquality setElimination rename dependent_pairFormation_alt equalityIstype promote_hyp voidElimination independent_pairFormation Error :memTop,  dependent_set_memberEquality_alt independent_pairEquality functionExtensionality setEquality

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{Gamma,  phi  \mvdash{}  \_\}.  \mforall{}w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}.
\mforall{}I:fset(\mBbbN{}).  \mforall{}a:Gamma(I).  \mforall{}u:glue-cube(Gamma;A;phi;T;w;I;a).
    (glue-morph(Gamma;A;phi;T;w;I;a;I;1;u)  =  u)



Date html generated: 2020_05_20-PM-05_40_29
Last ObjectModification: 2020_04_21-PM-05_47_28

Theory : cubical!type!theory


Home Index