Nuprl Lemma : glue-unglue

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[b:{Gamma ⊢ _:Glue [phi ⊢→ (T;w)] A}].
  (Gamma ⊢ glue [phi ⊢→ b] unglue(b) b ∈ {Gamma ⊢ _:Glue [phi ⊢→ (T;w)] A})


Proof




Definitions occuring in Statement :  unglue-term: unglue(b) glue-term: glue [phi ⊢→ t] a glue-type: Glue [phi ⊢→ (T;w)] A context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-term: {X ⊢ _:A} member: t ∈ T all: x:A. B[x] unglue-term: unglue(b) glue-term: glue [phi ⊢→ t] a glue-type: Glue [phi ⊢→ (T;w)] A glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q true: True squash: T context-subset: Gamma, phi pi2: snd(t) glue-morph: glue-morph(Gamma;A;phi;T;w;I;rho;J;f;u)
Lemmas referenced :  I_cube_wf fset_wf nat_wf names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf glue-type_wf istype-cubical-term context-subset_wf cubical-fun_wf thin-context-subset cubical-type_wf face-type_wf cubical_set_wf cubical_type_at_pair_lemma fl-eq_wf cubical-term-at_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff true_wf iff_weakening_equal istype-true glue-equations_wf pair-eta subtype_rel_product I_cube_pair_redex_lemma cubical-type-at_wf top_wf istype-top cubical_type_ap_morph_pair_lemma bfalse_wf false_wf istype-void squash_wf istype-universe cube_set_restriction_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt functionExtensionality introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule functionIsType universeIsType because_Cache equalityIstype applyEquality instantiate dependent_functionElimination Error :memTop,  inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity productElimination independent_isectElimination lambdaEquality_alt productEquality cumulativity isectEquality dependent_pairFormation_alt promote_hyp independent_functionElimination voidElimination independent_pairFormation natural_numberEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination functionEquality setEquality setIsType independent_pairEquality hyp_replacement universeEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[b:\{Gamma  \mvdash{}  \_:Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A\}].
    (Gamma  \mvdash{}  glue  [phi  \mvdash{}\mrightarrow{}  b]  unglue(b)  =  b)



Date html generated: 2020_05_20-PM-05_46_48
Last ObjectModification: 2020_04_21-PM-07_43_11

Theory : cubical!type!theory


Home Index