Nuprl Lemma : geo-out-preserves-opp-side
∀e:BasicGeometry. ∀p,q,a,b,c,r,m:Point.
  (p ≠ q 
⇒ a-pq-c 
⇒ Colinear(p;q;m) 
⇒ a=m=c 
⇒ Colinear(p;q;r) 
⇒ out(r ab) 
⇒ b-pq-c)
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-opp-side: P-AB-Q
, 
geo-midpoint: a=m=b
, 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
stable: Stable{P}
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
, 
geo-eq: a ≡ b
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
geo-out: out(p ab)
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
euclidean-plane: EuclideanPlane
, 
oriented-plane: OrientedPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
geo-midpoint: a=m=b
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
geo-opp-side: P-AB-Q
Lemmas referenced : 
geo-out_wf, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-midpoint_wf, 
geo-opp-side_wf, 
geo-sep_wf, 
geo-point_wf, 
stable__geo-opp-side, 
false_wf, 
or_wf, 
not_wf, 
geo-between_wf, 
minimal-double-negation-hyp-elim, 
geo-out_functionality, 
geo-eq_weakening, 
geo-midpoint_functionality, 
geo-opp-side_functionality, 
minimal-not-not-excluded-middle, 
geo-out-preserves-opp-side-case1, 
geo-between_functionality, 
geo-sep_functionality, 
symmetric-point-construction, 
geo-sep-sym, 
geo-colinear_functionality, 
geo-midpoint-diagonals-between, 
geo-congruent-sep, 
geo-midpoint-diagonals-congruent, 
geo-midpoint-symmetry, 
oriented-colinear-append, 
subtype_rel_self, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
equal_wf, 
exists_wf, 
geo-colinear-is-colinear-set, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
lelt_wf, 
geo-opp-side-sym, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
basic-geometry--subtype, 
all_wf, 
geo-between-symmetry, 
geo-colinear-append, 
geo-between-sep, 
geo-between-outer-trans, 
geo-out-colinear
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
functionEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality, 
rename, 
independent_pairFormation, 
setEquality, 
productEquality, 
cumulativity, 
dependent_pairFormation, 
inrFormation, 
inlFormation, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
setElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q,a,b,c,r,m:Point.
    (p  \mneq{}  q  {}\mRightarrow{}  a-pq-c  {}\mRightarrow{}  Colinear(p;q;m)  {}\mRightarrow{}  a=m=c  {}\mRightarrow{}  Colinear(p;q;r)  {}\mRightarrow{}  out(r  ab)  {}\mRightarrow{}  b-pq-c)
Date html generated:
2017_10_02-PM-06_45_35
Last ObjectModification:
2017_08_10-PM-06_06_02
Theory : euclidean!plane!geometry
Home
Index