Nuprl Lemma : lsep-implies-sep-or-lsep

e:EuclideanPlane. ∀a,b,c,x:Point.  (a bc  (c ≠ x ∨ ab))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T oriented-plane: OrientedPlane geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False select: L[n] cons: [a b] subtract: m subtype_rel: A ⊆B guard: {T} sq_exists: x:A [B[x]] euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T basic-geometry: BasicGeometry geo-equilateral: EQΔ(a;b;c) geo-midpoint: a=m=b uiff: uiff(P;Q) cand: c∧ B l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b true: True ge: i ≥  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] iff: ⇐⇒ Q
Lemmas referenced :  lsep-colinear-sep1 geo-colinear-is-colinear-set length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-colinear_wf lsep-symmetry euclidean-plane-axioms colinear-equidistant-points-exist geo-sep-sym lsep-implies-sep geo-sep_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf Euclid-midpoint sq_stable__midpoint midpoint-sep Euclid-Prop1 upper-dimension-axiom geo-congruent-iff-length geo-length-flip colinear-lsep-cycle lsep-all-sym geo-between-implies-colinear geo-colinear-permute geo-colinear-append cons_wf nil_wf length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma l_member_wf list_ind_cons_lemma list_ind_nil_lemma geo-sep-or colinear-lsep colinear-lsep' lsep-symmetry2 geo-colinear-cycle or_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule hypothesisEquality independent_functionElimination hypothesis isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination isectElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt universeIsType productIsType applyEquality because_Cache productElimination instantiate inhabitedIsType setElimination rename imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry equalityIstype int_eqEquality inlFormation_alt inrFormation_alt

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x:Point.    (a  \#  bc  {}\mRightarrow{}  (c  \mneq{}  x  \mvee{}  x  \#  ab))



Date html generated: 2019_10_16-PM-02_33_30
Last ObjectModification: 2019_07_23-PM-10_01_49

Theory : euclidean!plane!geometry


Home Index