Nuprl Lemma : ip-congruent-same2

[rv:InnerProductSpace]. ∀[a,b,c:Point].  (ab=cc  a ≡ b)


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q ip-congruent: ab=cd prop: ss-eq: x ≡ y not: ¬A false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q rv-sub: y rv-minus: -x all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ip-congruent_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf ss-eq_wf rv-sub_wf rv-0_wf rv-mul_wf int-to-real_wf radd_wf rv-add_wf req_wf rv-norm_wf real_wf rleq_wf rmul_wf rv-ip_wf uiff_transitivity ss-eq_functionality rv-mul-1-add ss-eq_weakening rv-mul_functionality radd-int rv-mul0 req_functionality req_weakening rv-norm_functionality rv-norm0 rv-norm-is-zero rv-sub-is-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality instantiate independent_isectElimination isect_memberEquality voidElimination natural_numberEquality minusEquality setElimination rename setEquality productEquality independent_functionElimination productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    (ab=cc  {}\mRightarrow{}  a  \mequiv{}  b)



Date html generated: 2017_10_04-PM-11_56_47
Last ObjectModification: 2017_03_11-PM-03_01_12

Theory : inner!product!spaces


Home Index