Nuprl Lemma : sum-in-vs-const
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:{n..m + 1-} ⟶ |K|]. ∀[a:Point(vs)].
  (Σ{f[i] * a | n≤i≤m} = Σ(K) n ≤ i < m + 1. f[i] * a ∈ Point(vs))
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vs-mul: a * x
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
cand: A c∧ B
, 
less_than: a < b
, 
subtract: n - m
Lemmas referenced : 
vs-point_wf, 
int_seg_wf, 
rng_car_wf, 
istype-int, 
vector-space_wf, 
rng_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
vs-mul-zero, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
empty-sum-in-vs, 
vs-mul_wf, 
rng_sig_wf, 
rng_sum_unroll_empty, 
iff_weakening_equal, 
sum-in-vs_wf, 
rng_sum_unroll_hi, 
add-subtract-cancel, 
subtract-add-cancel, 
rng_plus_wf, 
rng_sum_wf, 
vs-mul-add, 
vs-add_wf, 
sum-in-vs-split, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
vs-add-comm-nu, 
sum-in-vs-single, 
vs-0_wf, 
vs-zero-add, 
rng_zero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
lambdaFormation_alt, 
intWeakElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
productElimination, 
unionElimination, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
productIsType, 
hypothesis_subsumption, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
minusEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  |K|].  \mforall{}[a:Point(vs)].
    (\mSigma{}\{f[i]  *  a  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}(K)  n  \mleq{}  i  <  m  +  1.  f[i]  *  a)
Date html generated:
2019_10_31-AM-06_26_28
Last ObjectModification:
2019_08_19-AM-10_33_16
Theory : linear!algebra
Home
Index