Nuprl Lemma : sum-in-vs-const

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f:{n..m 1-} ⟶ |K|]. ∀[a:Point(vs)].
  {f[i] n≤i≤m} = Σ(K) n ≤ i < 1. f[i] a ∈ Point(vs))


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-mul: x vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T rng_sum: rng_sum rng: Rng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng: Rng all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q infix_ap: y cand: c∧ B less_than: a < b subtract: m
Lemmas referenced :  vs-point_wf int_seg_wf rng_car_wf istype-int vector-space_wf rng_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self itermAdd_wf int_term_value_add_lemma istype-nat vs-mul-zero equal_wf squash_wf true_wf istype-universe empty-sum-in-vs vs-mul_wf rng_sig_wf rng_sum_unroll_empty iff_weakening_equal sum-in-vs_wf rng_sum_unroll_hi add-subtract-cancel subtract-add-cancel rng_plus_wf rng_sum_wf vs-mul-add vs-add_wf sum-in-vs-split add-associates add-commutes add-swap zero-add vs-add-comm-nu sum-in-vs-single vs-0_wf vs-zero-add rng_zero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsType addEquality natural_numberEquality dependent_functionElimination lambdaFormation_alt intWeakElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation functionIsTypeImplies productElimination unionElimination applyEquality instantiate cumulativity intEquality equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt because_Cache productIsType hypothesis_subsumption imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement minusEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  |K|].  \mforall{}[a:Point(vs)].
    (\mSigma{}\{f[i]  *  a  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}(K)  n  \mleq{}  i  <  m  +  1.  f[i]  *  a)



Date html generated: 2019_10_31-AM-06_26_28
Last ObjectModification: 2019_08_19-AM-10_33_16

Theory : linear!algebra


Home Index