Nuprl Lemma : adjacent-frs-points

[p:ℝ List]. ∀[i:ℕ||p|| 1].  (frs-non-dec(p)  r0≤p[i 1] p[i]≤frs-mesh(p))


Proof




Definitions occuring in Statement :  frs-mesh: frs-mesh(p) frs-non-dec: frs-non-dec(L) rbetween: x≤y≤z rsub: y int-to-real: r(n) real: select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] implies:  Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q rbetween: x≤y≤z and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A false: False int_seg: {i..j-} uimplies: supposing a nat_plus: + guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T uiff: uiff(P;Q) subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) frs-non-dec: frs-non-dec(L) subtract: m rsub: y frs-mesh: frs-mesh(p) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b so_apply: x[s]
Lemmas referenced :  frs-non-dec_wf less_than'_wf rsub_wf select_wf real_wf nat_plus_properties int_seg_properties subtract_wf length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf int-to-real_wf nat_plus_wf frs-mesh_wf int_seg_wf list_wf radd-preserves-rleq rleq_wf radd_wf rminus_wf lelt_wf add-member-int_seg2 uiff_transitivity rleq_functionality radd_comm radd-ac req_weakening radd_functionality radd-rminus-both radd-zero-both lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf rmaximum_ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality addEquality setElimination rename natural_numberEquality independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed minusEquality axiomEquality dependent_set_memberEquality independent_functionElimination equalityElimination instantiate cumulativity

Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[i:\mBbbN{}||p||  -  1].    (frs-non-dec(p)  {}\mRightarrow{}  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}frs-mesh(p))



Date html generated: 2017_10_03-AM-09_36_22
Last ObjectModification: 2017_07_28-AM-07_54_02

Theory : reals


Home Index