Nuprl Lemma : geometric-series-one-half
We have  Σn.(r1/r(2)^n) = r(2) because n = 0 ∈ ℤ is included in the series.⋅
Σn.(r1/r(2)^n) = r(2)
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rdiv: (x/y)
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
so_apply: x[s]
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermConstant: "const"
, 
rat_term_ind: rat_term_ind, 
pi1: fst(t)
, 
rtermDivide: num "/" denom
, 
rtermSubtract: left "-" right
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
rsub: x - y
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
series-sum_functionality, 
rnexp_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
istype-nat, 
rsub_wf, 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermSubtract_wf, 
istype-int, 
geometric-series-converges, 
rleq-int-fractions2, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
istype-false, 
rless-int-fractions3, 
rleq_wf, 
rnexp-positive, 
rmul_preserves_rless, 
radd_wf, 
rminus_wf, 
rmul_wf, 
iff_transitivity, 
squash_wf, 
true_wf, 
real_wf, 
rminus-int, 
iff_weakening_equal, 
rless_functionality, 
req_weakening, 
radd-int, 
radd_functionality, 
rminus_functionality, 
rmul-rdiv-cancel, 
rmul_comm, 
rmul-one-both, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rmul-int, 
req_functionality, 
req_inversion, 
rnexp-rdiv, 
rnexp-one, 
rdiv_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
hypothesisEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
inrFormation_alt, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
lambdaFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
unionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
inrFormation, 
minusEquality, 
addEquality, 
multiplyEquality, 
addLevel, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lambdaFormation, 
levelHypothesis
Latex:
\mSigma{}n.(r1/r(2)\^{}n)  =  r(2)
Date html generated:
2019_10_29-AM-10_26_25
Last ObjectModification:
2019_04_02-AM-10_00_34
Theory : reals
Home
Index