Nuprl Lemma : implies-convex-on
∀[I:Interval]. ∀[f:I ⟶ℝ].
  ((∀x,y:ℝ.  ((x ∈ I) 
⇒ (y ∈ I) 
⇒ (x = y) 
⇒ (f[x] = f[y])))
  
⇒ (∀x,y:ℝ.
        ((x < y)
        
⇒ (∀t:ℝ
              ((x ∈ I)
              
⇒ (y ∈ I)
              
⇒ (t ∈ [r0, r1])
              
⇒ (f[(t * x) + ((r1 - t) * y)] ≤ ((t * f[x]) + ((r1 - t) * f[y])))))))
  
⇒ convex-on(I;x.f[x]))
Proof
Definitions occuring in Statement : 
convex-on: convex-on(I;x.f[x])
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
convex-on: convex-on(I;x.f[x])
, 
all: ∀x:A. B[x]
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
top: Top
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
Lemmas referenced : 
i-member-convex, 
i-member_wf, 
rccint_wf, 
int-to-real_wf, 
real_wf, 
all_wf, 
rless_wf, 
rleq_wf, 
radd_wf, 
rmul_wf, 
rsub_wf, 
req_wf, 
less_than'_wf, 
nat_plus_wf, 
rfun_wf, 
interval_wf, 
stable__rleq, 
false_wf, 
or_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
member_rccint_lemma, 
rleq-implies-rleq, 
trivial-rsub-rleq, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
radd-preserves-rleq, 
rleq_functionality, 
radd-zero, 
itermAdd_wf, 
itermMultiply_wf, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
rleq_transitivity, 
rleq_weakening, 
rleq_antisymmetry, 
not-rless, 
req_functionality, 
radd_functionality, 
req_weakening, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
productElimination, 
isectElimination, 
natural_numberEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
independent_isectElimination, 
unionElimination, 
voidEquality, 
independent_pairFormation, 
approximateComputation, 
int_eqEquality, 
intEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (y  \mmember{}  I)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.
                ((x  <  y)
                {}\mRightarrow{}  (\mforall{}t:\mBbbR{}
                            ((x  \mmember{}  I)
                            {}\mRightarrow{}  (y  \mmember{}  I)
                            {}\mRightarrow{}  (t  \mmember{}  [r0,  r1])
                            {}\mRightarrow{}  (f[(t  *  x)  +  ((r1  -  t)  *  y)]  \mleq{}  ((t  *  f[x])  +  ((r1  -  t)  *  f[y])))))))
    {}\mRightarrow{}  convex-on(I;x.f[x]))
Date html generated:
2018_05_22-PM-02_19_36
Last ObjectModification:
2017_10_21-PM-08_45_01
Theory : reals
Home
Index