Nuprl Lemma : implies-convex-on

[I:Interval]. ∀[f:I ⟶ℝ].
  ((∀x,y:ℝ.  ((x ∈ I)  (y ∈ I)  (x y)  (f[x] f[y])))
   (∀x,y:ℝ.
        ((x < y)
         (∀t:ℝ
              ((x ∈ I)
               (y ∈ I)
               (t ∈ [r0, r1])
               (f[(t x) ((r1 t) y)] ≤ ((t f[x]) ((r1 t) f[y])))))))
   convex-on(I;x.f[x]))


Proof




Definitions occuring in Statement :  convex-on: convex-on(I;x.f[x]) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I interval: Interval rleq: x ≤ y rless: x < y rsub: y req: y rmul: b radd: b int-to-real: r(n) real: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q convex-on: convex-on(I;x.f[x]) all: x:A. B[x] i-member: r ∈ I rccint: [l, u] and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rfun: I ⟶ℝ rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B stable: Stable{P} uimplies: supposing a or: P ∨ Q top: Top cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  i-member-convex i-member_wf rccint_wf int-to-real_wf real_wf all_wf rless_wf rleq_wf radd_wf rmul_wf rsub_wf req_wf less_than'_wf nat_plus_wf rfun_wf interval_wf stable__rleq false_wf or_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle member_rccint_lemma rleq-implies-rleq trivial-rsub-rleq itermSubtract_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma radd-preserves-rleq rleq_functionality radd-zero itermAdd_wf itermMultiply_wf real_term_value_add_lemma real_term_value_mul_lemma rleq_transitivity rleq_weakening rleq_antisymmetry not-rless req_functionality radd_functionality req_weakening rmul_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule productElimination isectElimination natural_numberEquality lambdaEquality because_Cache functionEquality applyEquality dependent_set_memberEquality independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination unionElimination voidEquality independent_pairFormation approximateComputation int_eqEquality intEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (y  \mmember{}  I)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.
                ((x  <  y)
                {}\mRightarrow{}  (\mforall{}t:\mBbbR{}
                            ((x  \mmember{}  I)
                            {}\mRightarrow{}  (y  \mmember{}  I)
                            {}\mRightarrow{}  (t  \mmember{}  [r0,  r1])
                            {}\mRightarrow{}  (f[(t  *  x)  +  ((r1  -  t)  *  y)]  \mleq{}  ((t  *  f[x])  +  ((r1  -  t)  *  f[y])))))))
    {}\mRightarrow{}  convex-on(I;x.f[x]))



Date html generated: 2018_05_22-PM-02_19_36
Last ObjectModification: 2017_10_21-PM-08_45_01

Theory : reals


Home Index