Nuprl Lemma : reg-less_wf
∀[x:ℝ]. ∀[y:{y:ℝ| ∃n:{ℕ+| (x n) + 4 < y n}} ].  (reg-less(x;y) ∈ {n:ℕ+| (x n) + 4 < y n} )
Proof
Definitions occuring in Statement : 
reg-less: reg-less(x;y)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_upper: {i...}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
so_apply: x[s]
, 
reg-less: reg-less(x;y)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
eqtt_to_assert, 
add-swap, 
add-associates, 
bool_wf, 
equal-wf-T-base, 
all_wf, 
iff_wf, 
assert_wf, 
assert_of_lt_int, 
true_wf, 
btrue_wf, 
less_than_transitivity1, 
iff_imp_equal_bool, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
subtype_rel_sets, 
int_upper_wf, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
decidable__lt, 
lt_int_wf, 
find-ge_wf, 
int-value-type, 
function-value-type, 
regular-int-seq_wf, 
set-value-type, 
value-type-has-value, 
less_than_wf, 
nat_plus_wf, 
sq_exists_wf, 
real_wf, 
set_wf, 
le_wf, 
false_wf, 
regular-less-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
addEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
callbyvalueReduce, 
independent_isectElimination, 
functionEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
setEquality, 
int_eqEquality, 
computeAll, 
addLevel, 
impliesFunctionality, 
productEquality, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\{y:\mBbbR{}|  \mexists{}n:\{\mBbbN{}\msupplus{}|  (x  n)  +  4  <  y  n\}\}  ].    (reg-less(x;y)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  (x  n)  +  4  <  y  n\}  )
Date html generated:
2016_05_18-AM-06_47_52
Last ObjectModification:
2016_01_17-AM-01_45_42
Theory : reals
Home
Index