Nuprl Lemma : reg-less_wf

[x:ℝ]. ∀[y:{y:ℝ| ∃n:{ℕ+(x n) 4 < n}} ].  (reg-less(x;y) ∈ {n:ℕ+(x n) 4 < n} )


Proof




Definitions occuring in Statement :  reg-less: reg-less(x;y) real: nat_plus: + less_than: a < b uall: [x:A]. B[x] sq_exists: x:{A| B[x]} member: t ∈ T set: {x:A| B[x]}  apply: a add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] int_upper: {i...} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: exists: x:A. B[x] sq_exists: x:{A| B[x]} so_lambda: λ2x.t[x] real: so_apply: x[s] reg-less: reg-less(x;y) has-value: (a)↓ uimplies: supposing a squash: T nat_plus: + decidable: Dec(P) or: P ∨ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top true: True guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) assert: b ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  eqtt_to_assert add-swap add-associates bool_wf equal-wf-T-base all_wf iff_wf assert_wf assert_of_lt_int true_wf btrue_wf less_than_transitivity1 iff_imp_equal_bool int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties subtype_rel_sets int_upper_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 decidable__lt lt_int_wf find-ge_wf int-value-type function-value-type regular-int-seq_wf set-value-type value-type-has-value less_than_wf nat_plus_wf sq_exists_wf real_wf set_wf le_wf false_wf regular-less-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename hypothesis lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality productElimination independent_functionElimination dependent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry lambdaEquality addEquality applyEquality isect_memberEquality because_Cache callbyvalueReduce independent_isectElimination functionEquality intEquality imageMemberEquality baseClosed unionElimination voidElimination voidEquality dependent_pairFormation setEquality int_eqEquality computeAll addLevel impliesFunctionality productEquality levelHypothesis promote_hyp andLevelFunctionality

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\{y:\mBbbR{}|  \mexists{}n:\{\mBbbN{}\msupplus{}|  (x  n)  +  4  <  y  n\}\}  ].    (reg-less(x;y)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  (x  n)  +  4  <  y  n\}  )



Date html generated: 2016_05_18-AM-06_47_52
Last ObjectModification: 2016_01_17-AM-01_45_42

Theory : reals


Home Index