Nuprl Lemma : arctangent_functionality_wrt_rless
∀x,y:ℝ.  arctangent(x) < arctangent(y) supposing x < y
Proof
Definitions occuring in Statement : 
arctangent: arctangent(x), 
rless: x < y, 
real: ℝ, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
true: True, 
rge: x ≥ y, 
guard: {T}, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
rneq: x ≠ y, 
or: P ∨ Q, 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
top: Top, 
sq_stable: SqStable(P), 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I
Lemmas referenced : 
rnexp2-nonneg, 
real_wf, 
rless_wf, 
int-to-real_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
trivial-rless-radd, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
derivative-implies-strictly-increasing, 
riiint_wf, 
iproper-riiint, 
arctangent_wf, 
i-member_wf, 
rdiv_wf, 
derivative-arctangent, 
set_wf, 
function-is-continuous, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
radd_functionality, 
rnexp_functionality, 
req_witness, 
req_wf, 
rmul_preserves_rless, 
rmul_wf, 
rmul-zero-both, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
rless_functionality, 
req_transitivity, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
sq_stable__rless, 
member_riiint_lemma, 
true_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberFormation, 
isectElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
inrFormation, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination
Latex:
\mforall{}x,y:\mBbbR{}.    arctangent(x)  <  arctangent(y)  supposing  x  <  y
Date html generated:
2018_05_22-PM-03_02_08
Last ObjectModification:
2017_10_21-PM-11_25_22
Theory : reals_2
Home
Index