Nuprl Lemma : rexp-unique
∀f:ℝ ⟶ ℝ
  ((∀x,y:ℝ.  ((x = y) ⇒ (f[x] = f[y]))) ⇒ (f[r0] = r1) ⇒ d(f[x])/dx = λx.f[x] on (-∞, ∞) ⇒ (∀x:ℝ. (f[x] = e^x)))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
riiint: (-∞, ∞), 
rexp: e^x, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x y.t[x; y], 
member: t ∈ T, 
so_apply: x[s], 
so_apply: x[s1;s2], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x]), 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
guard: {T}, 
exists: ∃x:A. B[x], 
nat: ℕ, 
ifun: ifun(f;I), 
top: Top, 
real-fun: real-fun(f;a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_upper: {i...}, 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
squash: ↓T, 
true: True
Lemmas referenced : 
equal-functions-by-Taylor, 
real_wf, 
nat_wf, 
rexp_wf, 
req_wf, 
req_functionality, 
rexp_functionality, 
req_weakening, 
derivative-rexp, 
derivative_wf, 
riiint_wf, 
i-member_wf, 
int-to-real_wf, 
all_wf, 
rccint_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
set_wf, 
ifun_wf, 
rccint-icompact, 
rleq-int, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
I-norm_wf, 
icompact_wf, 
false_wf, 
le_wf, 
I-norm-bound, 
int_upper_properties, 
member_rccint_lemma, 
subtype_rel_dep_function, 
rleq_wf, 
subtype_rel_self, 
rabs-rleq-iff, 
squash_wf, 
true_wf, 
rminus-int, 
iff_weakening_equal, 
rabs_wf, 
int_upper_wf, 
exists_wf, 
rexp0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
productElimination, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
functionEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
minusEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (f[r0]  =  r1)
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f[x]  on  (-\minfty{},  \minfty{})
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  (f[x]  =  e\^{}x)))
Date html generated:
2016_10_26-PM-00_11_49
Last ObjectModification:
2016_09_12-PM-05_39_21
Theory : reals_2
Home
Index