Nuprl Lemma : seq-append-assoc
∀[n,m,k:ℕ]. ∀[s1,s2,s3:Top].
  (seq-append(n;m + k;s1;seq-append(m;k;s2;s3)) ~ seq-append(n + m;k;seq-append(n;m;s1;s2);s3))
Proof
Definitions occuring in Statement : 
seq-append: seq-append(n;m;s1;s2)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
seq-append: seq-append(n;m;s1;s2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
top: Top
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
ge: i ≥ j 
, 
subtract: n - m
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
has-value: (a)↓
Lemmas referenced : 
istype-int, 
istype-top, 
istype-nat, 
istype-void, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
set_subtype_base, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-less_than, 
istype-assert, 
le_wf, 
bool_wf, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul, 
zero-add, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
add-commutes, 
mul-distributes-right, 
zero-mul, 
less-iff-le, 
add-zero, 
not-lt-2, 
minus-one-mul-top, 
add-swap, 
omega-shadow, 
mul-distributes, 
minus-add, 
mul-associates, 
mul-swap, 
mul-commutes, 
le-add-cancel, 
nat_properties, 
decidable__lt, 
has-value_wf_base, 
is-exception_wf, 
bottom-sqle
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
Error :equalityIsType4, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
sqequalHypSubstitution, 
axiomSqEquality, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
isectElimination, 
Error :isectIsTypeImplies, 
voidElimination, 
setElimination, 
rename, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
lessCases, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
addEquality, 
Error :dependent_pairFormation_alt, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
Error :functionIsType, 
Error :universeIsType, 
Error :equalityIsType1, 
cumulativity, 
Error :dependent_set_memberEquality_alt, 
sqequalSqle, 
divergentSqle, 
callbyvalueLess, 
sqleReflexivity, 
lessExceptionCases, 
axiomSqleEquality, 
exceptionSqequal
Latex:
\mforall{}[n,m,k:\mBbbN{}].  \mforall{}[s1,s2,s3:Top].
    (seq-append(n;m  +  k;s1;seq-append(m;k;s2;s3))  \msim{}  seq-append(n  +  m;k;seq-append(n;m;s1;s2);s3))
Date html generated:
2019_06_20-AM-11_28_36
Last ObjectModification:
2018_10_27-AM-11_38_11
Theory : bar-induction
Home
Index