Nuprl Lemma : seq-append-assoc

[n,m,k:ℕ]. ∀[s1,s2,s3:Top].
  (seq-append(n;m k;s1;seq-append(m;k;s2;s3)) seq-append(n m;k;seq-append(n;m;s1;s2);s3))


Proof




Definitions occuring in Statement :  seq-append: seq-append(n;m;s1;s2) nat: uall: [x:A]. B[x] top: Top add: m sqequal: t
Definitions unfolded in proof :  seq-append: seq-append(n;m;s1;s2) uall: [x:A]. B[x] member: t ∈ T implies:  Q top: Top nat: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q prop: ge: i ≥  subtract: m nat_plus: + le: A ≤ B decidable: Dec(P) has-value: (a)↓
Lemmas referenced :  istype-int istype-top istype-nat istype-void lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert set_subtype_base int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot istype-less_than istype-assert le_wf bool_wf add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul add-commutes mul-distributes-right zero-mul less-iff-le add-zero not-lt-2 minus-one-mul-top add-swap omega-shadow mul-distributes minus-add mul-associates mul-swap mul-commutes le-add-cancel nat_properties decidable__lt has-value_wf_base is-exception_wf bottom-sqle
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  Error :equalityIsType4,  extract_by_obid hypothesis hypothesisEquality because_Cache sqequalHypSubstitution axiomSqEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  isectElimination Error :isectIsTypeImplies,  voidElimination setElimination rename multiplyEquality minusEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases independent_pairFormation imageMemberEquality baseClosed imageElimination independent_functionElimination addEquality Error :dependent_pairFormation_alt,  baseApply closedConclusion applyEquality intEquality Error :lambdaEquality_alt,  promote_hyp dependent_functionElimination instantiate Error :functionIsType,  Error :universeIsType,  Error :equalityIsType1,  cumulativity Error :dependent_set_memberEquality_alt,  sqequalSqle divergentSqle callbyvalueLess sqleReflexivity lessExceptionCases axiomSqleEquality exceptionSqequal

Latex:
\mforall{}[n,m,k:\mBbbN{}].  \mforall{}[s1,s2,s3:Top].
    (seq-append(n;m  +  k;s1;seq-append(m;k;s2;s3))  \msim{}  seq-append(n  +  m;k;seq-append(n;m;s1;s2);s3))



Date html generated: 2019_06_20-AM-11_28_36
Last ObjectModification: 2018_10_27-AM-11_38_11

Theory : bar-induction


Home Index