Nuprl Lemma : pcw-path-coPath_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:Path].
  ∀[n:ℕ]
    ((pcw-path-coPath(n;p) ∈ copath(a.B[a];w))
    ∧ ((copath-length(pcw-path-coPath(n;p)) n ∈ ℤ)
       (copath-at(w;pcw-path-coPath(n;p)) (fst(snd((p n)))) ∈ coW(A;a.B[a])))) 
  supposing StepAgree(p 0;⋅;w)


Proof




Definitions occuring in Statement :  pcw-path-coPath: pcw-path-coPath(n;p) copath-length: copath-length(p) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) pcw-path: Path pcw-step-agree: StepAgree(s;p1;w) nat: it: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) implies:  Q and: P ∧ Q unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  coW: coW(A;a.B[a]) less_than': less_than'(a;b) le: A ≤ B pcw-path: Path so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  false: False implies:  Q nat: member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B coPath-at: coPath-at(n;w;p) pi1: fst(t) pi2: snd(t) copath-nil: () spreadn: spread3 pcw-step-agree: StepAgree(s;p1;w) copath-at: copath-at(w;p) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) pcw-path-coPath: pcw-path-coPath(n;p) guard: {T} or: P ∨ Q decidable: Dec(P) let: let bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q pcw-steprel: StepRel(s1;s2) cand: c∧ B true: True coW-dom: coW-dom(a.B[a];w) squash: T ext-eq: A ≡ B sq_type: SQType(T) coW-item: coW-item(w;b)
Lemmas referenced :  istype-universe coW_wf pcw-path_wf istype-le it_wf unit_wf2 pcw-step-agree_wf istype-nat subtract-1-ge-0 istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties equal-wf-base and_wf top_wf param-co-W_wf subtype_rel-equal equal_wf equal-wf-T-base pcw-step_wf le_wf false_wf copath-nil_wf copath_length_nil_lemma int_subtype_base set_subtype_base copath-length_wf subtract-add-cancel int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le subtract_wf eq_int_wf bool_wf assert_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf istype-assert pcw-steprel_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot istype-top copath-extend_wf coW-ext subtype_rel_weakening pi1_wf coW-dom_wf squash_wf true_wf subtype_rel_self iff_weakening_equal copath-at-extend subtype_base_sq unit_subtype_base coW-item_wf
Rules used in proof :  universeEquality Error :functionIsType,  Error :dependent_set_memberEquality_alt,  applyEquality cumulativity instantiate equalitySymmetry equalityTransitivity Error :inhabitedIsType,  Error :functionIsTypeImplies,  axiomEquality Error :universeIsType,  independent_pairFormation sqequalRule voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality Error :lambdaFormation_alt,  intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution intEquality applyLambdaEquality voidEquality isect_memberEquality baseClosed productEquality productElimination lambdaFormation dependent_set_memberEquality because_Cache functionExtensionality lambdaEquality independent_pairEquality sqequalBase closedConclusion baseApply Error :equalityIstype,  unionElimination equalityElimination hyp_replacement promote_hyp hypothesis_subsumption functionEquality imageElimination imageMemberEquality Error :productIsType

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:Path].
    \mforall{}[n:\mBbbN{}]
        ((pcw-path-coPath(n;p)  \mmember{}  copath(a.B[a];w))
        \mwedge{}  ((copath-length(pcw-path-coPath(n;p))  =  n)
            {}\mRightarrow{}  (copath-at(w;pcw-path-coPath(n;p))  =  (fst(snd((p  n))))))) 
    supposing  StepAgree(p  0;\mcdot{};w)



Date html generated: 2019_06_20-PM-00_57_04
Last ObjectModification: 2019_04_11-AM-09_56_17

Theory : co-recursion-2


Home Index