Nuprl Lemma : gamma-neighbourhood-prop1

beta:ℕ ⟶ ℕ. ∀n0:finite-nat-seq().
  ((∀a:ℕ ⟶ ℕ. ∃x:ℕ(↑isl(gamma-neighbourhood(beta;n0) a^(x))))
  ∧ (∀a,b:finite-nat-seq().
       ((↑isl(gamma-neighbourhood(beta;n0) a))
        ((gamma-neighbourhood(beta;n0) a) (gamma-neighbourhood(beta;n0) a**b) ∈ (ℕ?)))))


Proof




Definitions occuring in Statement :  gamma-neighbourhood: gamma-neighbourhood(beta;n0) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() nat: assert: b isl: isl(x) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T implies:  Q uall: [x:A]. B[x] isl: isl(x) exists: x:A. B[x] nat: finite-nat-seq: finite-nat-seq() pi1: fst(t) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: subtype_rel: A ⊆B gamma-neighbourhood: gamma-neighbourhood(beta;n0) ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff init-seg-nat-seq: init-seg-nat-seq(f;g) iff: ⇐⇒ Q mk-finite-nat-seq: f^(n) append-finite-nat-seq: f**g pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s] true: True exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb squash: T rev_implies:  Q
Lemmas referenced :  istype-assert gamma-neighbourhood_wf btrue_wf bfalse_wf finite-nat-seq_wf istype-nat add_nat_wf istype-false istype-le nat_properties decidable__le add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf mk-finite-nat-seq_wf subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat subtype_rel_self bool_cases_sqequal init-seg-nat-seq_wf assert_of_tt assert-init-seg-nat-seq extend-seq1-all-dec all_wf decidable_wf exists_wf assert_wf append-finite-nat-seq_wf not_wf equal-wf-base set_subtype_base le_wf int_subtype_base eqtt_to_assert eqff_to_assert subtype_base_sq bool_wf bool_subtype_base assert-bnot init-seg-nat-seq-append-implies-left decidable__equal_int unit_wf2 true_wf init-seg-nat-seq-append-implies-right decidable__exists_int_seg decidable__not equal_wf squash_wf istype-universe iff_weakening_equal append-finite-nat-seq-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut Error :inhabitedIsType,  hypothesisEquality independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality unionElimination sqequalRule Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :universeIsType,  Error :functionIsType,  Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  addEquality productElimination setElimination rename closedConclusion natural_numberEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply baseClosed independent_isectElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination because_Cache instantiate functionEquality productEquality intEquality equalityElimination cumulativity Error :inlEquality_alt,  Error :productIsType,  sqequalBase Error :equalityIsType1,  Error :inrFormation_alt,  Error :inlFormation_alt,  Error :unionIsType,  imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n0:finite-nat-seq().
    ((\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}x:\mBbbN{}.  (\muparrow{}isl(gamma-neighbourhood(beta;n0)  a\^{}(x))))
    \mwedge{}  (\mforall{}a,b:finite-nat-seq().
              ((\muparrow{}isl(gamma-neighbourhood(beta;n0)  a))
              {}\mRightarrow{}  ((gamma-neighbourhood(beta;n0)  a)  =  (gamma-neighbourhood(beta;n0)  a**b)))))



Date html generated: 2019_06_20-PM-03_03_53
Last ObjectModification: 2018_11_28-AM-08_57_16

Theory : continuity


Home Index