Nuprl Lemma : gamma-neighbourhood-prop1
∀beta:ℕ ⟶ ℕ. ∀n0:finite-nat-seq().
  ((∀a:ℕ ⟶ ℕ. ∃x:ℕ. (↑isl(gamma-neighbourhood(beta;n0) a^(x))))
  ∧ (∀a,b:finite-nat-seq().
       ((↑isl(gamma-neighbourhood(beta;n0) a))
       ⇒ ((gamma-neighbourhood(beta;n0) a) = (gamma-neighbourhood(beta;n0) a**b) ∈ (ℕ?)))))
Proof
Definitions occuring in Statement : 
gamma-neighbourhood: gamma-neighbourhood(beta;n0), 
append-finite-nat-seq: f**g, 
mk-finite-nat-seq: f^(n), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
assert: ↑b, 
isl: isl(x), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
union: left + right, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
isl: isl(x), 
exists: ∃x:A. B[x], 
nat: ℕ, 
finite-nat-seq: finite-nat-seq(), 
pi1: fst(t), 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
gamma-neighbourhood: gamma-neighbourhood(beta;n0), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
bfalse: ff, 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
iff: P ⇐⇒ Q, 
mk-finite-nat-seq: f^(n), 
append-finite-nat-seq: f**g, 
pi2: snd(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
sq_type: SQType(T), 
bnot: ¬bb, 
squash: ↓T, 
rev_implies: P ⇐ Q
Lemmas referenced : 
istype-assert, 
gamma-neighbourhood_wf, 
btrue_wf, 
bfalse_wf, 
finite-nat-seq_wf, 
istype-nat, 
add_nat_wf, 
istype-false, 
istype-le, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
mk-finite-nat-seq_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
bool_cases_sqequal, 
init-seg-nat-seq_wf, 
assert_of_tt, 
assert-init-seg-nat-seq, 
extend-seq1-all-dec, 
all_wf, 
decidable_wf, 
exists_wf, 
assert_wf, 
append-finite-nat-seq_wf, 
not_wf, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
init-seg-nat-seq-append-implies-left, 
decidable__equal_int, 
unit_wf2, 
true_wf, 
init-seg-nat-seq-append-implies-right, 
decidable__exists_int_seg, 
decidable__not, 
equal_wf, 
squash_wf, 
istype-universe, 
iff_weakening_equal, 
append-finite-nat-seq-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
Error :inhabitedIsType, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
unionElimination, 
sqequalRule, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :universeIsType, 
Error :functionIsType, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
productElimination, 
setElimination, 
rename, 
closedConclusion, 
natural_numberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
baseClosed, 
independent_isectElimination, 
approximateComputation, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
instantiate, 
functionEquality, 
productEquality, 
intEquality, 
equalityElimination, 
cumulativity, 
Error :inlEquality_alt, 
Error :productIsType, 
sqequalBase, 
Error :equalityIsType1, 
Error :inrFormation_alt, 
Error :inlFormation_alt, 
Error :unionIsType, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n0:finite-nat-seq().
    ((\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}x:\mBbbN{}.  (\muparrow{}isl(gamma-neighbourhood(beta;n0)  a\^{}(x))))
    \mwedge{}  (\mforall{}a,b:finite-nat-seq().
              ((\muparrow{}isl(gamma-neighbourhood(beta;n0)  a))
              {}\mRightarrow{}  ((gamma-neighbourhood(beta;n0)  a)  =  (gamma-neighbourhood(beta;n0)  a**b)))))
Date html generated:
2019_06_20-PM-03_03_53
Last ObjectModification:
2018_11_28-AM-08_57_16
Theory : continuity
Home
Index