Nuprl Lemma : strong-continuity-test-sp_wf

[M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ]. ∀[k:ℕ].  (strong-continuity-test-sp(M;n;f;k) ∈ ℕ?)


Proof




Definitions occuring in Statement :  strong-continuity-test-sp: strong-continuity-test-sp(M;n;f;k) int_seg: {i..j-} nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q strong-continuity-test-sp: strong-continuity-test-sp(M;n;f;k) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_seg: {i..j-} nequal: a ≠ b ∈  lelt: i ≤ j < k
Lemmas referenced :  nat_wf int_seg_wf unit_wf2 nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec0_lemma primrec-unroll-1 le_wf subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int primrec_wf int_seg_subtype_nat int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis because_Cache functionEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality unionEquality isect_memberFormation sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination inlEquality dependent_set_memberEquality applyEquality functionExtensionality equalityElimination productElimination inrEquality promote_hyp instantiate cumulativity

Latex:
\mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
    (strong-continuity-test-sp(M;n;f;k)  \mmember{}  \mBbbN{}?)



Date html generated: 2017_04_17-AM-10_01_49
Last ObjectModification: 2017_02_27-PM-05_53_27

Theory : continuity


Home Index