Nuprl Lemma : list_accum-mapfilter

[T,U,A:Type]. ∀[f:A ⟶ U ⟶ A]. ∀[L:T List]. ∀[p:{a:T| (a ∈ L)}  ⟶ 𝔹]. ∀[g:{a:T| (a ∈ L) ∧ (↑(p a))}  ⟶ U]. ∀[x:A].
  (accumulate (with value and list item x):
    f[a;x]
   over list:
     mapfilter(g;p;L)
   with starting value:
    x) accumulate (with value and list item x):
          if then f[a;g x] else fi 
         over list:
           L
         with starting value:
          x))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_member: (x ∈ l) list_accum: list_accum list: List assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) mapfilter: mapfilter(f;P;L) iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  cand: c∧ B bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_member_wf assert_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases mapfilter_nil_lemma list_accum_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_accum_cons_lemma filter_cons_lemma cons_member cons_wf eqtt_to_assert map_cons_lemma subtype_rel_dep_function subtype_rel_sets subtype_rel_self set_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality setEquality cumulativity productEquality applyEquality functionExtensionality dependent_set_memberEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality addEquality baseClosed instantiate imageElimination inlFormation equalityElimination inrFormation universeEquality isect_memberFormation

Latex:
\mforall{}[T,U,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  U  {}\mrightarrow{}  A].  \mforall{}[L:T  List].  \mforall{}[p:\{a:T|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[g:\{a:T| 
                                                                                                                                                          (a  \mmember{}  L)  \mwedge{}  (\muparrow{}(p  a))\} 
                                                                                                                                                        {}\mrightarrow{}  U].  \mforall{}[x:A].
    (accumulate  (with  value  a  and  list  item  x):
        f[a;x]
      over  list:
          mapfilter(g;p;L)
      with  starting  value:
        x)  \msim{}  accumulate  (with  value  a  and  list  item  x):
                    if  p  x  then  f[a;g  x]  else  a  fi 
                  over  list:
                      L
                  with  starting  value:
                    x))



Date html generated: 2017_04_17-AM-07_37_24
Last ObjectModification: 2017_02_27-PM-04_12_30

Theory : list_1


Home Index