Nuprl Lemma : mapfilter-reduce
∀[f:Top]. ∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)} ⟶ 𝔹].
(mapfilter(f;P;L) ~ reduce(λx,y. if P x then [f x / y] else y fi ;[];L))
Proof
Definitions occuring in Statement :
mapfilter: mapfilter(f;P;L)
,
l_member: (x ∈ l)
,
reduce: reduce(f;k;as)
,
cons: [a / b]
,
nil: []
,
list: T List
,
ifthenelse: if b then t else f fi
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
top: Top
,
set: {x:A| B[x]}
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
mapfilter: mapfilter(f;P;L)
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
l_member_wf,
bool_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list-cases,
reduce_nil_lemma,
filter_nil_lemma,
map_nil_lemma,
nil_wf,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
equal_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
reduce_cons_lemma,
filter_cons_lemma,
subtype_rel_dep_function,
cons_wf,
subtype_rel_sets,
cons_member,
subtype_rel_self,
set_wf,
eqtt_to_assert,
map_cons_lemma,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
list_wf,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
functionEquality,
setEquality,
cumulativity,
applyEquality,
because_Cache,
unionElimination,
promote_hyp,
hypothesis_subsumption,
productElimination,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
baseClosed,
instantiate,
imageElimination,
inrFormation,
functionExtensionality,
inlFormation,
equalityElimination,
universeEquality
Latex:
\mforall{}[f:Top]. \mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}].
(mapfilter(f;P;L) \msim{} reduce(\mlambda{}x,y. if P x then [f x / y] else y fi ;[];L))
Date html generated:
2017_04_17-AM-07_25_33
Last ObjectModification:
2017_02_27-PM-04_04_22
Theory : list_1
Home
Index