Nuprl Lemma : reduce-mapfilter

[f1,x:Top]. ∀[T,A:Type]. ∀[as:T List]. ∀[P:{a:T| (a ∈ as)}  ⟶ 𝔹]. ∀[f2:{a:T| (a ∈ as) ∧ (↑(P a))}  ⟶ A].
  (reduce(f1;x;mapfilter(f2;P;as)) reduce(λu,z. if then f1 (f2 u) else fi ;x;as))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_member: (x ∈ l) reduce: reduce(f;k;as) list: List assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q mapfilter: mapfilter(f;P;L) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_member_wf assert_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases reduce_nil_lemma filter_nil_lemma map_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma filter_cons_lemma subtype_rel_dep_function cons_wf subtype_rel_sets cons_member subtype_rel_self set_wf eqtt_to_assert map_cons_lemma eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf top_wf
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality setEquality cumulativity productEquality applyEquality functionExtensionality dependent_set_memberEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality addEquality baseClosed instantiate imageElimination inrFormation inlFormation equalityElimination universeEquality isect_memberFormation

Latex:
\mforall{}[f1,x:Top].  \mforall{}[T,A:Type].  \mforall{}[as:T  List].  \mforall{}[P:\{a:T|  (a  \mmember{}  as)\}    {}\mrightarrow{}  \mBbbB{}].
\mforall{}[f2:\{a:T|  (a  \mmember{}  as)  \mwedge{}  (\muparrow{}(P  a))\}    {}\mrightarrow{}  A].
    (reduce(f1;x;mapfilter(f2;P;as))  \msim{}  reduce(\mlambda{}u,z.  if  P  u  then  f1  (f2  u)  z  else  z  fi  ;x;as))



Date html generated: 2017_04_17-AM-07_30_26
Last ObjectModification: 2017_02_27-PM-04_08_28

Theory : list_1


Home Index