Nuprl Lemma : bag-combine-as-accum

[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[bs:bag(A)].  (⋃b∈bs.f[b] bag-accum(c,b.f[b] c;{};bs) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-combine: x∈bs.f[x] bag-append: as bs empty-bag: {} bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind bag-map: bag-map(f;bs) map: map(f;as) empty-bag: {} bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum cons-bag: x.b true: True iff: ⇐⇒ Q rev_implies:  Q bag-append: as bs
Lemmas referenced :  bag_to_squash_list nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat equal_wf bag_wf bag-combine_wf bag-accum_wf empty-bag_wf bag-append_wf bag-append-assoc-comm istype-universe bag-combine-cons-left cons-bag_wf list-subtype-bag squash_wf true_wf subtype_rel_self iff_weakening_equal cons-bag-as-append bag-append-comm single-bag_wf list_accum_append subtype_rel_list top_wf bag-accum-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename lambdaFormation_alt setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType unionElimination hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase hyp_replacement isectIsTypeImplies functionIsType universeEquality imageMemberEquality functionEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[bs:bag(A)].    (\mcup{}b\mmember{}bs.f[b]  =  bag-accum(c,b.f[b]  +  c;\{\};bs))



Date html generated: 2019_10_15-AM-11_00_34
Last ObjectModification: 2019_08_01-PM-01_36_17

Theory : bags


Home Index