Nuprl Lemma : bag-map-filter

[T,A:Type]. ∀[f:T ⟶ A]. ∀[P:T ⟶ 𝔹]. ∀[Q:A ⟶ 𝔹].
  ∀[L:bag(T)]. (bag-map(f;[x∈L|P[x]]) [x∈bag-map(f;L)|Q[x]] ∈ bag(A)) supposing ∀x:T. Q[f x] P[x]


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) bag: bag(T) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] bag-map: bag-map(f;bs) bag-filter: [x∈b|p[x]] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  bag_wf list_wf permutation_wf equal_wf equal-wf-base all_wf bool_wf map-filter map_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot quotient-member-eq permutation-equiv bag-filter_wf bag-map_wf list-subtype-bag subtype_rel_bag assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename dependent_functionElimination independent_functionElimination productEquality isect_memberEquality axiomEquality lambdaEquality applyEquality functionExtensionality functionEquality independent_isectElimination setElimination intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll sqequalAxiom unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination setEquality hyp_replacement

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[Q:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[L:bag(T)].  (bag-map(f;[x\mmember{}L|P[x]])  =  [x\mmember{}bag-map(f;L)|Q[x]])  supposing  \mforall{}x:T.  Q[f  x]  =  P[x]



Date html generated: 2017_10_01-AM-08_46_01
Last ObjectModification: 2017_07_26-PM-04_31_04

Theory : bags


Home Index