Nuprl Lemma : can-find-first

[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List.  ((∃x:T [first-member(T;x;L;P)]) ∨ (∀x∈L.¬↑(P x)))


Proof




Definitions occuring in Statement :  first-member: first-member(T;x;L;P) l_all: (∀x∈L.P[x]) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q guard: {T} or: P ∨ Q top: Top sq_exists: x:A [B[x]] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False iff: ⇐⇒ Q rev_implies:  Q not: ¬A decidable: Dec(P) cand: c∧ B first-member: first-member(T;x;L;P) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) nat_plus: + less_than: a < b squash: T true: True satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b]
Lemmas referenced :  list_induction or_wf sq_exists_wf first-member_wf l_all_wf2 not_wf assert_wf l_member_wf list_wf l_all_nil nil_wf bool_wf cons_wf ifthenelse_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot first-member-cons decidable__assert l_all_cons length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf lelt_wf length_wf int_seg_properties intformle_wf int_formula_prop_le_lemma select_wf int_seg_wf decidable__le all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity functionExtensionality applyEquality hypothesis setElimination rename setEquality independent_functionElimination inrFormation isect_memberEquality voidElimination voidEquality because_Cache dependent_functionElimination functionEquality universeEquality unionElimination inlFormation dependent_set_memberEquality equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate independent_pairFormation dependent_set_memberFormation natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality pointwiseFunctionality baseApply closedConclusion int_eqEquality intEquality computeAll addEquality productEquality imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    ((\mexists{}x:T  [first-member(T;x;L;P)])  \mvee{}  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P  x)))



Date html generated: 2018_05_21-PM-06_34_04
Last ObjectModification: 2017_07_26-PM-04_52_22

Theory : general


Home Index