Nuprl Lemma : cantor-to-fb_wf

[b:ℕ ⟶ ℕ+]. ∀[g:ℕ ⟶ 𝔹]. ∀[n:ℕ].  (cantor-to-fb(b;g;n) ∈ ℕn)


Proof




Definitions occuring in Statement :  cantor-to-fb: cantor-to-fb(b;g;n) int_seg: {i..j-} nat_plus: + nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] cantor-to-fb: cantor-to-fb(b;g;n) has-value: (a)↓ member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + so_apply: x[s] all: x:A. B[x] guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q
Lemmas referenced :  value-type-has-value int-value-type sum_wf nat_wf int_seg_subtype_nat false_wf nat_plus_wf int_seg_wf subtract_wf non_neg_sum le_weakening2 int_seg_properties nat_properties decidable__lt le_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf nat_plus_subtype_nat equal_wf bool_wf mu-property bor_wf lt_int_wf decidable__le intformle_wf itermAdd_wf intformeq_wf int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_eq_lemma iff_transitivity assert_wf or_wf less_than_wf iff_weakening_uiff assert_of_bor assert_of_lt_int itermSubtract_wf int_term_value_subtract_lemma mu_wf lelt_wf uall_wf isect_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule callbyvalueReduce cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename independent_pairFormation lambdaFormation because_Cache dependent_set_memberEquality dependent_functionElimination productElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination voidElimination dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll functionEquality addEquality orFunctionality inlFormation promote_hyp

Latex:
\mforall{}[b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}].  \mforall{}[g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (cantor-to-fb(b;g;n)  \mmember{}  \mBbbN{}b  n)



Date html generated: 2018_05_21-PM-07_57_49
Last ObjectModification: 2017_07_26-PM-05_35_21

Theory : general


Home Index