Nuprl Lemma : finite-set-type-cases
∀[T:Type]
∀L:(T ⟶ ℙ) List
∀[P:T ⟶ ℙ]
((∀x:T. Dec(P[x]))
⇒ (∀Q∈L.∀x:T. Dec(Q[x]))
⇒ (∀Q∈L.finite-type({x:T| Q[x]} ))
⇒ (∀x:T. (P[x]
⇒ (∃Q∈L. Q[x])))
⇒ finite-type({x:T| P[x]} ))
Proof
Definitions occuring in Statement :
finite-type: finite-type(T)
,
l_exists: (∃x∈L. P[x])
,
l_all: (∀x∈L.P[x])
,
list: T List
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
l_all: (∀x∈L.P[x])
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
l_exists: (∃x∈L. P[x])
,
le: A ≤ B
,
cand: A c∧ B
,
pi1: fst(t)
,
nat: ℕ
,
l_member: (x ∈ l)
,
ge: i ≥ j
,
sq_type: SQType(T)
Lemmas referenced :
finite-decidable-set,
all_wf,
l_exists_wf,
l_member_wf,
l_all_wf2,
finite-type_wf,
decidable_wf,
list_wf,
select_wf,
int_seg_properties,
length_wf,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
int_seg_wf,
concat_wf,
map_wf,
exists_wf,
pi1_wf_top,
equal_wf,
upto_wf,
member-concat,
member_map,
lelt_wf,
member_upto,
length_wf_nat,
le_wf,
less_than_wf,
equal-wf-base-T,
nat_properties,
subtype_base_sq,
nat_wf,
set_subtype_base,
int_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
independent_functionElimination,
hypothesis,
productElimination,
instantiate,
functionEquality,
universeEquality,
setElimination,
rename,
because_Cache,
setEquality,
dependent_functionElimination,
independent_isectElimination,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
imageElimination,
independent_pairEquality,
equalityTransitivity,
equalitySymmetry,
addLevel,
existsFunctionality,
andLevelFunctionality,
productEquality,
dependent_set_memberEquality,
promote_hyp
Latex:
\mforall{}[T:Type]
\mforall{}L:(T {}\mrightarrow{} \mBbbP{}) List
\mforall{}[P:T {}\mrightarrow{} \mBbbP{}]
((\mforall{}x:T. Dec(P[x]))
{}\mRightarrow{} (\mforall{}Q\mmember{}L.\mforall{}x:T. Dec(Q[x]))
{}\mRightarrow{} (\mforall{}Q\mmember{}L.finite-type(\{x:T| Q[x]\} ))
{}\mRightarrow{} (\mforall{}x:T. (P[x] {}\mRightarrow{} (\mexists{}Q\mmember{}L. Q[x])))
{}\mRightarrow{} finite-type(\{x:T| P[x]\} ))
Date html generated:
2018_05_21-PM-07_34_09
Last ObjectModification:
2017_07_26-PM-05_08_47
Theory : general
Home
Index