Nuprl Lemma : finite-set-type-cases
∀[T:Type]
  ∀L:(T ⟶ ℙ) List
    ∀[P:T ⟶ ℙ]
      ((∀x:T. Dec(P[x]))
      
⇒ (∀Q∈L.∀x:T. Dec(Q[x]))
      
⇒ (∀Q∈L.finite-type({x:T| Q[x]} ))
      
⇒ (∀x:T. (P[x] 
⇒ (∃Q∈L. Q[x])))
      
⇒ finite-type({x:T| P[x]} ))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T)
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
l_exists: (∃x∈L. P[x])
, 
le: A ≤ B
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
nat: ℕ
, 
l_member: (x ∈ l)
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
Lemmas referenced : 
finite-decidable-set, 
all_wf, 
l_exists_wf, 
l_member_wf, 
l_all_wf2, 
finite-type_wf, 
decidable_wf, 
list_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
concat_wf, 
map_wf, 
exists_wf, 
pi1_wf_top, 
equal_wf, 
upto_wf, 
member-concat, 
member_map, 
lelt_wf, 
member_upto, 
length_wf_nat, 
le_wf, 
less_than_wf, 
equal-wf-base-T, 
nat_properties, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
independent_functionElimination, 
hypothesis, 
productElimination, 
instantiate, 
functionEquality, 
universeEquality, 
setElimination, 
rename, 
because_Cache, 
setEquality, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
existsFunctionality, 
andLevelFunctionality, 
productEquality, 
dependent_set_memberEquality, 
promote_hyp
Latex:
\mforall{}[T:Type]
    \mforall{}L:(T  {}\mrightarrow{}  \mBbbP{})  List
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:T.  Dec(P[x]))
            {}\mRightarrow{}  (\mforall{}Q\mmember{}L.\mforall{}x:T.  Dec(Q[x]))
            {}\mRightarrow{}  (\mforall{}Q\mmember{}L.finite-type(\{x:T|  Q[x]\}  ))
            {}\mRightarrow{}  (\mforall{}x:T.  (P[x]  {}\mRightarrow{}  (\mexists{}Q\mmember{}L.  Q[x])))
            {}\mRightarrow{}  finite-type(\{x:T|  P[x]\}  ))
Date html generated:
2018_05_21-PM-07_34_09
Last ObjectModification:
2017_07_26-PM-05_08_47
Theory : general
Home
Index