Nuprl Lemma : finite-set-type-cases

[T:Type]
  ∀L:(T ⟶ ℙList
    ∀[P:T ⟶ ℙ]
      ((∀x:T. Dec(P[x]))
       (∀Q∈L.∀x:T. Dec(Q[x]))
       (∀Q∈L.finite-type({x:T| Q[x]} ))
       (∀x:T. (P[x]  (∃Q∈L. Q[x])))
       finite-type({x:T| P[x]} ))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: subtype_rel: A ⊆B l_all: (∀x∈L.P[x]) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T l_exists: (∃x∈L. P[x]) le: A ≤ B cand: c∧ B pi1: fst(t) nat: l_member: (x ∈ l) ge: i ≥  sq_type: SQType(T)
Lemmas referenced :  finite-decidable-set all_wf l_exists_wf l_member_wf l_all_wf2 finite-type_wf decidable_wf list_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf concat_wf map_wf exists_wf pi1_wf_top equal_wf upto_wf member-concat member_map lelt_wf member_upto length_wf_nat le_wf less_than_wf equal-wf-base-T nat_properties subtype_base_sq nat_wf set_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity independent_functionElimination hypothesis productElimination instantiate functionEquality universeEquality setElimination rename because_Cache setEquality dependent_functionElimination independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_pairEquality equalityTransitivity equalitySymmetry addLevel existsFunctionality andLevelFunctionality productEquality dependent_set_memberEquality promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}L:(T  {}\mrightarrow{}  \mBbbP{})  List
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:T.  Dec(P[x]))
            {}\mRightarrow{}  (\mforall{}Q\mmember{}L.\mforall{}x:T.  Dec(Q[x]))
            {}\mRightarrow{}  (\mforall{}Q\mmember{}L.finite-type(\{x:T|  Q[x]\}  ))
            {}\mRightarrow{}  (\mforall{}x:T.  (P[x]  {}\mRightarrow{}  (\mexists{}Q\mmember{}L.  Q[x])))
            {}\mRightarrow{}  finite-type(\{x:T|  P[x]\}  ))



Date html generated: 2018_05_21-PM-07_34_09
Last ObjectModification: 2017_07_26-PM-05_08_47

Theory : general


Home Index