Nuprl Lemma : first-member-iff
∀[T:Type]
  ∀L:T List. ∀P:T ⟶ 𝔹. ∀x:T.
    (first-member(T;x;L;P) 
⇐⇒ ∃K,J:T List. ((L = (K @ [x / J]) ∈ (T List)) ∧ (↑(P x)) ∧ (∀y∈K.¬↑(P y))))
Proof
Definitions occuring in Statement : 
first-member: first-member(T;x;L;P)
, 
l_all: (∀x∈L.P[x])
, 
append: as @ bs
, 
cons: [a / b]
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
first-member: first-member(T;x;L;P)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
true: True
, 
sq_type: SQType(T)
, 
select: L[n]
, 
cons: [a / b]
Lemmas referenced : 
first-member_wf, 
append_wf, 
cons_wf, 
assert_wf, 
l_all_wf2, 
not_wf, 
l_member_wf, 
bool_wf, 
list_wf, 
firstn_wf, 
nth_tl_wf, 
add-commutes, 
istype-void, 
nth_tl_decomp_eq, 
int_seg_subtype_nat, 
length_wf, 
istype-false, 
int_seg_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
append_firstn_lastn_sq, 
subtype_rel_list, 
top_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
le_wf, 
less_than_wf, 
equal_wf, 
l_all_iff, 
member-firstn, 
length-append, 
length_of_cons_lemma, 
non_neg_length, 
intformle_wf, 
int_formula_prop_le_lemma, 
equal-wf-base, 
int_seg_wf, 
length_wf_nat, 
set_subtype_base, 
int_subtype_base, 
select_wf, 
decidable__le, 
false_wf, 
select_append_back, 
iff_weakening_equal, 
subtype_base_sq, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
select_append_front, 
select_member, 
l_all_fwd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
equalityIsType1, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
setIsType, 
functionIsType, 
universeEquality, 
dependent_pairFormation_alt, 
addEquality, 
because_Cache, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
instantiate, 
cumulativity, 
productEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:T.
        (first-member(T;x;L;P)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}K,J:T  List.  ((L  =  (K  @  [x  /  J]))  \mwedge{}  (\muparrow{}(P  x))  \mwedge{}  (\mforall{}y\mmember{}K.\mneg{}\muparrow{}(P  y))))
Date html generated:
2019_10_15-AM-11_08_00
Last ObjectModification:
2018_10_16-AM-09_34_26
Theory : general
Home
Index