Nuprl Lemma : hd?_wf

[T:Type]. ∀[L:T List].  (hd?(L) ∈ T?)


Proof




Definitions occuring in Statement :  hd?: hd?(L) list: List uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hd?: hd?(L) subtype_rel: A ⊆B uimplies: supposing a top: Top all: x:A. B[x] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q or: P ∨ Q false: False cons: [a b] guard: {T} nat: le: A ≤ B decidable: Dec(P) subtract: m less_than': less_than'(a;b) true: True listp: List+
Lemmas referenced :  null_wf3 subtype_rel_list top_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf list_wf eqtt_to_assert assert_of_null it_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot hd_wf listp_properties list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed cumulativity independent_functionElimination productElimination inrEquality independent_pairFormation impliesFunctionality inlEquality dependent_functionElimination promote_hyp hypothesis_subsumption setElimination rename natural_numberEquality addEquality intEquality minusEquality dependent_set_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (hd?(L)  \mmember{}  T?)



Date html generated: 2018_05_21-PM-07_33_23
Last ObjectModification: 2017_07_26-PM-05_08_17

Theory : general


Home Index