Nuprl Lemma : hd?_wf
∀[T:Type]. ∀[L:T List].  (hd?(L) ∈ T?)
Proof
Definitions occuring in Statement : 
hd?: hd?(L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hd?: hd?(L)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
false: False
, 
cons: [a / b]
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
Lemmas referenced : 
null_wf3, 
subtype_rel_list, 
top_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
list_wf, 
eqtt_to_assert, 
assert_of_null, 
it_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
length_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
cumulativity, 
independent_functionElimination, 
productElimination, 
inrEquality, 
independent_pairFormation, 
impliesFunctionality, 
inlEquality, 
dependent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
setElimination, 
rename, 
natural_numberEquality, 
addEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (hd?(L)  \mmember{}  T?)
Date html generated:
2018_05_21-PM-07_33_23
Last ObjectModification:
2017_07_26-PM-05_08_17
Theory : general
Home
Index