Nuprl Lemma : non-forking-wellfounded-linorder

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (decidable-non-minimal(T;x,y.R[x;y])
   WellFnd{i}(T;x,y.R[x;y])
   (∀m:T. (unique-minimal(T;x,y.R[x;y];m)  non-forking(T;x,y.R[x;y])  WeakLinorder(T;x,y.x (R^*) y))))


Proof




Definitions occuring in Statement :  non-forking: non-forking(T;x,y.R[x; y]) decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y]) unique-minimal: unique-minimal(T;x,y.R[x; y];m) rel_star: R^* weak-linorder: WeakLinorder(T;x,y.R[x; y]) wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T weak-linorder: WeakLinorder(T;x,y.R[x; y]) and: P ∧ Q infix_ap: y so_apply: x[s1;s2] prop: so_lambda: λ2y.t[x; y] weak-connex: weak-connex(T; x,y.R[x; y]) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q rel_star: R^* exists: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtract: m non-forking: non-forking(T;x,y.R[x; y])
Lemmas referenced :  unique-minimal-wellfounded-implies rel_star_order non-forking_wf unique-minimal_wf wellfounded_wf decidable-non-minimal_wf rel_star_wf equal_wf squash_wf true_wf eta_conv iff_weakening_equal decidable__lt subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rel_exp_add_iff infix_ap_wf rel_exp_wf exists_wf nat_wf minus-one-mul add-swap add-mul-special zero-mul add-zero non-forking-rel_exp add-commutes add-associates zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination independent_pairFormation sqequalRule cumulativity lambdaEquality applyEquality functionExtensionality functionEquality universeEquality imageElimination imageMemberEquality baseClosed isect_memberEquality hyp_replacement equalitySymmetry instantiate equalityTransitivity natural_numberEquality independent_isectElimination productElimination setElimination rename unionElimination inlFormation dependent_pairFormation dependent_set_memberEquality int_eqEquality intEquality voidElimination voidEquality computeAll applyLambdaEquality inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (decidable-non-minimal(T;x,y.R[x;y])
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}m:T
                (unique-minimal(T;x,y.R[x;y];m)
                {}\mRightarrow{}  non-forking(T;x,y.R[x;y])
                {}\mRightarrow{}  WeakLinorder(T;x,y.x  rel\_star(T;  R)  y))))



Date html generated: 2018_05_21-PM-09_05_34
Last ObjectModification: 2017_07_26-PM-06_28_24

Theory : general


Home Index