Nuprl Lemma : non-forking-wellfounded-linorder
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
(decidable-non-minimal(T;x,y.R[x;y])
⇒ WellFnd{i}(T;x,y.R[x;y])
⇒ (∀m:T. (unique-minimal(T;x,y.R[x;y];m)
⇒ non-forking(T;x,y.R[x;y])
⇒ WeakLinorder(T;x,y.x (R^*) y))))
Proof
Definitions occuring in Statement :
non-forking: non-forking(T;x,y.R[x; y])
,
decidable-non-minimal: decidable-non-minimal(T;x,y.R[x; y])
,
unique-minimal: unique-minimal(T;x,y.R[x; y];m)
,
rel_star: R^*
,
weak-linorder: WeakLinorder(T;x,y.R[x; y])
,
wellfounded: WellFnd{i}(A;x,y.R[x; y])
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
infix_ap: x f y
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
weak-linorder: WeakLinorder(T;x,y.R[x; y])
,
and: P ∧ Q
,
infix_ap: x f y
,
so_apply: x[s1;s2]
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
weak-connex: weak-connex(T; x,y.R[x; y])
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rel_star: R^*
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtract: n - m
,
non-forking: non-forking(T;x,y.R[x; y])
Lemmas referenced :
unique-minimal-wellfounded-implies,
rel_star_order,
non-forking_wf,
unique-minimal_wf,
wellfounded_wf,
decidable-non-minimal_wf,
rel_star_wf,
equal_wf,
squash_wf,
true_wf,
eta_conv,
iff_weakening_equal,
decidable__lt,
subtract_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
rel_exp_add_iff,
infix_ap_wf,
rel_exp_wf,
exists_wf,
nat_wf,
minus-one-mul,
add-swap,
add-mul-special,
zero-mul,
add-zero,
non-forking-rel_exp,
add-commutes,
add-associates,
zero-add
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
independent_functionElimination,
hypothesis,
dependent_functionElimination,
independent_pairFormation,
sqequalRule,
cumulativity,
lambdaEquality,
applyEquality,
functionExtensionality,
functionEquality,
universeEquality,
imageElimination,
imageMemberEquality,
baseClosed,
isect_memberEquality,
hyp_replacement,
equalitySymmetry,
instantiate,
equalityTransitivity,
natural_numberEquality,
independent_isectElimination,
productElimination,
setElimination,
rename,
unionElimination,
inlFormation,
dependent_pairFormation,
dependent_set_memberEquality,
int_eqEquality,
intEquality,
voidElimination,
voidEquality,
computeAll,
applyLambdaEquality,
inrFormation
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(decidable-non-minimal(T;x,y.R[x;y])
{}\mRightarrow{} WellFnd\{i\}(T;x,y.R[x;y])
{}\mRightarrow{} (\mforall{}m:T
(unique-minimal(T;x,y.R[x;y];m)
{}\mRightarrow{} non-forking(T;x,y.R[x;y])
{}\mRightarrow{} WeakLinorder(T;x,y.x rel\_star(T; R) y))))
Date html generated:
2018_05_21-PM-09_05_34
Last ObjectModification:
2017_07_26-PM-06_28_24
Theory : general
Home
Index