Nuprl Lemma : select-zip

[as,bs:Top List]. ∀[i:ℕ].  zip(as;bs)[i] ~ <as[i], bs[i]> supposing i < ||as|| ∧ i < ||bs||


Proof




Definitions occuring in Statement :  zip: zip(as;bs) select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top and: P ∧ Q pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b cand: c∧ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf length_wf top_wf nat_wf list_wf equal-wf-T-base colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases nil_wf length_of_nil_lemma zip_nil_lemma stuck-spread base_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base length_of_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int cons_wf zip_cons_nil_lemma zip_cons_cons_lemma le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decidable__lt add-is-int-iff false_wf select-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom productEquality because_Cache equalityTransitivity equalitySymmetry applyEquality unionElimination baseClosed productElimination promote_hyp hypothesis_subsumption instantiate cumulativity addEquality applyLambdaEquality dependent_set_memberEquality imageElimination equalityElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[as,bs:Top  List].  \mforall{}[i:\mBbbN{}].    zip(as;bs)[i]  \msim{}  <as[i],  bs[i]>  supposing  i  <  ||as||  \mwedge{}  i  <  ||bs||



Date html generated: 2018_05_21-PM-06_53_17
Last ObjectModification: 2017_07_26-PM-04_58_51

Theory : general


Home Index