Nuprl Lemma : sq_stable__is_accum_splitting

[T,A:Type]. ∀[L:T List]. ∀[LL:(T List × A) List]. ∀[L2:T List × A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[x:A].
[g:(T List × A) ⟶ A].
  SqStable(is_accum_splitting(T;A;L;LL;L2;f;g;x))


Proof




Definitions occuring in Statement :  is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) list: List bool: 𝔹 sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) l_all: (∀x∈L.P[x]) top: Top prop: and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A less_than: a < b squash: T subtype_rel: A ⊆B so_apply: x[s] pi1: fst(t) pi2: snd(t) nat_plus: + less_than': less_than'(a;b) true: True uiff: uiff(P;Q) listp: List+ sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__and equal_wf list_wf append_wf concat_wf map_wf pi1_wf_top all_wf int_seg_wf length_wf assert_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma not_wf null_wf3 subtype_rel_list top_wf iseg_wf pi2_wf hd_wf listp_properties length-append length_of_cons_lemma length_of_nil_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf cons_wf nil_wf sq_stable__equal assert_of_null equal-wf-T-base sq_stable__all sq_stable__assert sq_stable__not assert_witness squash_wf is_accum_splitting_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis productEquality lambdaEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality natural_numberEquality sqequalRule applyEquality functionExtensionality because_Cache setElimination rename independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll imageElimination lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination functionEquality dependent_set_memberEquality imageMemberEquality baseClosed applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addEquality allFunctionality impliesFunctionality axiomEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[L:T  List].  \mforall{}[LL:(T  List  \mtimes{}  A)  List].  \mforall{}[L2:T  List  \mtimes{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
\mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].
    SqStable(is\_accum\_splitting(T;A;L;LL;L2;f;g;x))



Date html generated: 2018_05_21-PM-08_06_12
Last ObjectModification: 2017_07_26-PM-05_42_13

Theory : general


Home Index