Nuprl Lemma : sq_stable__is_accum_splitting
∀[T,A:Type]. ∀[L:T List]. ∀[LL:(T List × A) List]. ∀[L2:T List × A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[x:A].
∀[g:(T List × A) ⟶ A].
  SqStable(is_accum_splitting(T;A;L;LL;L2;f;g;x))
Proof
Definitions occuring in Statement : 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x)
, 
list: T List
, 
bool: 𝔹
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
listp: A List+
, 
sq_stable: SqStable(P)
Lemmas referenced : 
sq_stable__and, 
equal_wf, 
list_wf, 
append_wf, 
concat_wf, 
map_wf, 
pi1_wf_top, 
all_wf, 
int_seg_wf, 
length_wf, 
assert_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
not_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
iseg_wf, 
pi2_wf, 
hd_wf, 
listp_properties, 
length-append, 
length_of_cons_lemma, 
length_of_nil_lemma, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
cons_wf, 
nil_wf, 
sq_stable__equal, 
assert_of_null, 
equal-wf-T-base, 
sq_stable__all, 
sq_stable__assert, 
sq_stable__not, 
assert_witness, 
squash_wf, 
is_accum_splitting_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
productEquality, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
addEquality, 
allFunctionality, 
impliesFunctionality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[L:T  List].  \mforall{}[LL:(T  List  \mtimes{}  A)  List].  \mforall{}[L2:T  List  \mtimes{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
\mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].
    SqStable(is\_accum\_splitting(T;A;L;LL;L2;f;g;x))
Date html generated:
2018_05_21-PM-08_06_12
Last ObjectModification:
2017_07_26-PM-05_42_13
Theory : general
Home
Index