Nuprl Lemma : flattice-equiv-equiv
∀[X:Type]. EquivRel(Point(free-dl(X + X));x,y.flattice-equiv(X;x;y))
Proof
Definitions occuring in Statement : 
flattice-equiv: flattice-equiv(X;x;y)
, 
free-dl: free-dl(X)
, 
lattice-point: Point(l)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dl: free-dl(X)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-dl-type: free-dl-type(X)
, 
quotient: x,y:A//B[x; y]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
flattice-equiv: flattice-equiv(X;x;y)
, 
squash: ↓T
, 
trans: Trans(T;x,y.E[x; y])
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
flattice-order: flattice-order(X;as;bs)
, 
l_all: (∀x∈L.P[x])
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
l_exists: (∃x∈L. P[x])
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
dlattice-order: as 
⇒ bs
Lemmas referenced : 
subtype_quotient, 
list_wf, 
dlattice-eq_wf, 
dlattice-eq-equiv, 
lattice-point_wf, 
free-dl_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
flattice-equiv_wf, 
equal-wf-base, 
member_wf, 
flattice-order_wf, 
exists_wf, 
l_exists_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
l_member_wf, 
flip-union_wf, 
int_seg_wf, 
l_contains_weakening, 
l_contains_wf, 
flattice-order_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
applyEquality, 
instantiate, 
productEquality, 
universeEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
inrFormation, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
setEquality, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  EquivRel(Point(free-dl(X  +  X));x,y.flattice-equiv(X;x;y))
Date html generated:
2020_05_20-AM-08_59_49
Last ObjectModification:
2017_07_28-AM-09_18_26
Theory : lattices
Home
Index