Nuprl Lemma : free-dl_wf

[X:Type]. (free-dl(X) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  free-dl: free-dl(X) bdd-distributive-lattice: BoundedDistributiveLattice uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl: free-dl(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B free-dl-type: free-dl-type(X) all: x:A. B[x] prop: implies:  Q quotient: x,y:A//B[x; y] squash: T true: True guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) dlattice-eq: dlattice-eq(X;as;bs) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q l_subset: l_subset(T;as;bs) or: P ∨ Q free-dl-join: free-dl-join(as;bs) top: Top trans: Trans(T;x,y.E[x; y]) free-dl-meet: free-dl-meet(as;bs) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3]
Lemmas referenced :  dlattice-eq-equiv mk-bounded-distributive-lattice_wf free-dl-type_wf free-dl-meet_wf free-dl-join_wf nil_wf list_wf subtype_quotient dlattice-eq_wf cons_wf quotient-member-eq free-dl-meet_wf_list equal-wf-base equal_wf squash_wf true_wf exists_wf l_member_wf append_wf all_wf l_subset_wf member-free-dl-meet dlattice-order-iff dlattice-order_wf length_wf_nat nat_wf l_subset_append member_append equiv_rel_functionality_wrt_iff append_assoc l_subset_append2 l_subset_refl iff_weakening_equal list_accum_cons_lemma list_ind_nil_lemma list_accum_nil_lemma list_induction map_wf map_nil_lemma map_cons_lemma append-nil subtype_rel_list top_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule cumulativity hypothesis lambdaEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality independent_pairFormation universeEquality applyEquality promote_hyp lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination pointwiseFunctionality pertypeElimination productElimination productEquality imageElimination natural_numberEquality imageMemberEquality baseClosed functionEquality addLevel impliesFunctionality allFunctionality existsFunctionality andLevelFunctionality dependent_pairFormation dependent_set_memberEquality hyp_replacement applyLambdaEquality setElimination rename inrFormation inlFormation unionElimination levelHypothesis existsLevelFunctionality voidElimination voidEquality equalityUniverse orFunctionality orLevelFunctionality

Latex:
\mforall{}[X:Type].  (free-dl(X)  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2020_05_20-AM-08_27_30
Last ObjectModification: 2017_07_28-AM-09_13_28

Theory : lattices


Home Index